db8a09cd |
'use strict';
function __$strToBlobUri(str, mime, isBinary) {try {return window.URL.createObjectURL(new Blob([Uint8Array.from(str.split('').map(function(c) {return c.charCodeAt(0)}))], {type: mime}));} catch (e) {return "data:" + mime + (isBinary ? ";base64," : ",") + str;}}
L.SVG.Tile = L.SVG.extend({
initialize: function (tileCoord, tileSize, options) {
L.SVG.prototype.initialize.call(this, options);
this._tileCoord = tileCoord;
this._size = tileSize;
this._initContainer();
this._container.setAttribute('width', this._size.x);
this._container.setAttribute('height', this._size.y);
this._container.setAttribute('viewBox', [0, 0, this._size.x, this._size.y].join(' '));
this._layers = {};
},
getCoord: function() {
return this._tileCoord;
},
getContainer: function() {
return this._container;
},
onAdd: L.Util.falseFn,
addTo: function(map) {
this._map = map;
if (this.options.interactive) {
for (var i in this._layers) {
var layer = this._layers[i];
// By default, Leaflet tiles do not have pointer events.
layer._path.style.pointerEvents = 'auto';
this._map._targets[L.stamp(layer._path)] = layer;
}
}
},
removeFrom: function (map) {
if (this.options.interactive) {
for (var i in this._layers) {
var layer = this._layers[i];
delete this._map._targets[L.stamp(layer._path)];
}
}
delete this._map;
},
_initContainer: function() {
L.SVG.prototype._initContainer.call(this);
var rect = L.SVG.create('rect');
},
/// TODO: Modify _initPath to include an extra parameter, a group name
/// to order symbolizers by z-index
_addPath: function (layer) {
this._rootGroup.appendChild(layer._path);
this._layers[L.stamp(layer)] = layer;
},
_updateIcon: function (layer) {
var path = layer._path = L.SVG.create('image'),
icon = layer.options.icon,
options = icon.options,
size = L.point(options.iconSize),
anchor = options.iconAnchor ||
size && size.divideBy(2, true),
p = layer._point.subtract(anchor);
path.setAttribute('x', p.x);
path.setAttribute('y', p.y);
path.setAttribute('width', size.x + 'px');
path.setAttribute('height', size.y + 'px');
path.setAttribute('href', options.iconUrl);
}
});
L.svg.tile = function(tileCoord, tileSize, opts){
return new L.SVG.Tile(tileCoord, tileSize, opts);
};
// 🍂class Symbolizer
// 🍂inherits Class
// The abstract Symbolizer class is mostly equivalent in concept to a `L.Path` - it's an interface for
// polylines, polygons and circles. But instead of representing leaflet Layers,
// it represents things that have to be drawn inside a vector tile.
// A vector tile *data layer* might have zero, one, or more *symbolizer definitions*
// A vector tile *feature* might have zero, one, or more *symbolizers*.
// The actual symbolizers applied will depend on filters and the symbolizer functions.
var Symbolizer = L.Class.extend({
// 🍂method initialize(feature: GeoJSON, pxPerExtent: Number)
// Initializes a new Line Symbolizer given a GeoJSON feature and the
// pixel-to-coordinate-units ratio. Internal use only.
// 🍂method render(renderer, style)
// Renders this symbolizer in the given tiled renderer, with the given
// `L.Path` options. Internal use only.
render: function(renderer, style) {
this._renderer = renderer;
this.options = style;
renderer._initPath(this);
renderer._updateStyle(this);
},
// 🍂method render(renderer, style)
// Updates the `L.Path` options used to style this symbolizer, and re-renders it.
// Internal use only.
updateStyle: function(renderer, style) {
this.options = style;
renderer._updateStyle(this);
},
_getPixelBounds: function() {
var parts = this._parts;
var bounds = L.bounds([]);
for (var i = 0; i < parts.length; i++) {
var part = parts[i];
for (var j = 0; j < part.length; j++) {
bounds.extend(part[j]);
}
}
var w = this._clickTolerance(),
p = new L.Point(w, w);
bounds.min._subtract(p);
bounds.max._add(p);
return bounds;
},
_clickTolerance: L.Path.prototype._clickTolerance,
});
// Contains mixins which are common to the Line Symbolizer and the Fill Symbolizer.
var PolyBase = {
_makeFeatureParts: function(feat, pxPerExtent) {
var rings = feat.geometry;
var coord;
this._parts = [];
for (var i = 0; i < rings.length; i++) {
var ring = rings[i];
var part = [];
for (var j = 0; j < ring.length; j++) {
coord = ring[j];
// Protobuf vector tiles return {x: , y:}
// Geojson-vt returns [,]
part.push(L.point(coord).scaleBy(pxPerExtent));
}
this._parts.push(part);
}
},
makeInteractive: function() {
this._pxBounds = this._getPixelBounds();
}
};
// 🍂class PointSymbolizer
// 🍂inherits CircleMarker
// A symbolizer for points.
var PointSymbolizer = L.CircleMarker.extend({
includes: Symbolizer.prototype,
statics: {
iconCache: {}
},
initialize: function(feature, pxPerExtent) {
this.properties = feature.properties;
this._makeFeatureParts(feature, pxPerExtent);
},
render: function(renderer, style) {
Symbolizer.prototype.render.call(this, renderer, style);
this._radius = style.radius || L.CircleMarker.prototype.options.radius;
this._updatePath();
},
_makeFeatureParts: function(feat, pxPerExtent) {
var coord = feat.geometry[0];
if (typeof coord[0] === 'object' && 'x' in coord[0]) {
// Protobuf vector tiles return [{x: , y:}]
this._point = L.point(coord[0]).scaleBy(pxPerExtent);
this._empty = L.Util.falseFn;
} else {
// Geojson-vt returns [,]
this._point = L.point(coord).scaleBy(pxPerExtent);
this._empty = L.Util.falseFn;
}
},
makeInteractive: function() {
this._updateBounds();
},
updateStyle: function(renderer, style) {
this._radius = style.radius || this._radius;
this._updateBounds();
return Symbolizer.prototype.updateStyle.call(this, renderer, style);
},
_updateBounds: function() {
var icon = this.options.icon;
if (icon) {
var size = L.point(icon.options.iconSize),
anchor = icon.options.iconAnchor ||
size && size.divideBy(2, true),
p = this._point.subtract(anchor);
this._pxBounds = new L.Bounds(p, p.add(icon.options.iconSize));
} else {
L.CircleMarker.prototype._updateBounds.call(this);
}
},
_updatePath: function() {
if (this.options.icon) {
this._renderer._updateIcon(this);
} else {
L.CircleMarker.prototype._updatePath.call(this);
}
},
_getImage: function () {
if (this.options.icon) {
var url = this.options.icon.options.iconUrl,
img = PointSymbolizer.iconCache[url];
if (!img) {
var icon = this.options.icon;
img = PointSymbolizer.iconCache[url] = icon.createIcon();
}
return img;
} else {
return null;
}
},
_containsPoint: function(p) {
var icon = this.options.icon;
if (icon) {
return this._pxBounds.contains(p);
} else {
return L.CircleMarker.prototype._containsPoint.call(this, p);
}
}
});
// 🍂class LineSymbolizer
// 🍂inherits Polyline
// A symbolizer for lines. Can be applied to line and polygon features.
var LineSymbolizer = L.Polyline.extend({
includes: [Symbolizer.prototype, PolyBase],
initialize: function(feature, pxPerExtent) {
this.properties = feature.properties;
this._makeFeatureParts(feature, pxPerExtent);
},
render: function(renderer, style) {
style.fill = false;
Symbolizer.prototype.render.call(this, renderer, style);
this._updatePath();
},
updateStyle: function(renderer, style) {
style.fill = false;
Symbolizer.prototype.updateStyle.call(this, renderer, style);
},
});
// 🍂class FillSymbolizer
// 🍂inherits Polyline
// A symbolizer for filled areas. Applies only to polygon features.
var FillSymbolizer = L.Polygon.extend({
includes: [Symbolizer.prototype, PolyBase],
initialize: function(feature, pxPerExtent) {
this.properties = feature.properties;
this._makeFeatureParts(feature, pxPerExtent);
},
render: function(renderer, style) {
Symbolizer.prototype.render.call(this, renderer, style);
this._updatePath();
}
});
/* 🍂class VectorGrid
* 🍂inherits GridLayer
*
* A `VectorGrid` is a generic, abstract class for displaying tiled vector data.
* it provides facilities for symbolizing and rendering the data in the vector
* tiles, but lacks the functionality to fetch the vector tiles from wherever
* they are.
*
* Extends Leaflet's `L.GridLayer`.
*/
L.VectorGrid = L.GridLayer.extend({
options: {
// 🍂option rendererFactory = L.svg.tile
// A factory method which will be used to instantiate the per-tile renderers.
rendererFactory: L.svg.tile,
// 🍂option vectorTileLayerStyles: Object = {}
// A data structure holding initial symbolizer definitions for the vector features.
vectorTileLayerStyles: {},
// 🍂option interactive: Boolean = false
// Whether this `VectorGrid` fires `Interactive Layer` events.
interactive: false,
// 🍂option getFeatureId: Function = undefined
// A function that, given a vector feature, returns an unique identifier for it, e.g.
// `function(feat) { return feat.properties.uniqueIdField; }`.
// Must be defined for `setFeatureStyle` to work.
},
initialize: function(options) {
L.setOptions(this, options);
L.GridLayer.prototype.initialize.apply(this, arguments);
if (this.options.getFeatureId) {
this._vectorTiles = {};
this._overriddenStyles = {};
this.on('tileunload', function(e) {
var key = this._tileCoordsToKey(e.coords),
tile = this._vectorTiles[key];
if (tile && this._map) {
tile.removeFrom(this._map);
}
delete this._vectorTiles[key];
}, this);
}
this._dataLayerNames = {};
},
createTile: function(coords, done) {
var storeFeatures = this.options.getFeatureId;
var tileSize = this.getTileSize();
var renderer = this.options.rendererFactory(coords, tileSize, this.options);
var vectorTilePromise = this._getVectorTilePromise(coords);
if (storeFeatures) {
this._vectorTiles[this._tileCoordsToKey(coords)] = renderer;
renderer._features = {};
}
vectorTilePromise.then( function renderTile(vectorTile) {
for (var layerName in vectorTile.layers) {
this._dataLayerNames[layerName] = true;
var layer = vectorTile.layers[layerName];
var pxPerExtent = this.getTileSize().divideBy(layer.extent);
var layerStyle = this.options.vectorTileLayerStyles[ layerName ] ||
L.Path.prototype.options;
for (var i = 0; i < layer.features.length; i++) {
var feat = layer.features[i];
var id;
var styleOptions = layerStyle;
if (storeFeatures) {
id = this.options.getFeatureId(feat);
var styleOverride = this._overriddenStyles[id];
if (styleOverride) {
if (styleOverride[layerName]) {
styleOptions = styleOverride[layerName];
} else {
styleOptions = styleOverride;
}
}
}
if (styleOptions instanceof Function) {
styleOptions = styleOptions(feat.properties, coords.z);
}
if (!(styleOptions instanceof Array)) {
styleOptions = [styleOptions];
}
if (!styleOptions.length) {
continue;
}
var featureLayer = this._createLayer(feat, pxPerExtent);
for (var j = 0; j < styleOptions.length; j++) {
var style = L.extend({}, L.Path.prototype.options, styleOptions[j]);
featureLayer.render(renderer, style);
renderer._addPath(featureLayer);
}
if (this.options.interactive) {
featureLayer.makeInteractive();
}
if (storeFeatures) {
renderer._features[id] = {
layerName: layerName,
feature: featureLayer
};
}
}
}
if (this._map != null) {
renderer.addTo(this._map);
}
L.Util.requestAnimFrame(done.bind(coords, null, null));
}.bind(this));
return renderer.getContainer();
},
// 🍂method setFeatureStyle(id: Number, layerStyle: L.Path Options): this
// Given the unique ID for a vector features (as per the `getFeatureId` option),
// re-symbolizes that feature across all tiles it appears in.
setFeatureStyle: function(id, layerStyle) {
this._overriddenStyles[id] = layerStyle;
for (var tileKey in this._vectorTiles) {
var tile = this._vectorTiles[tileKey];
var features = tile._features;
var data = features[id];
if (data) {
var feat = data.feature;
var styleOptions = layerStyle;
if (layerStyle[data.layerName]) {
styleOptions = layerStyle[data.layerName];
}
this._updateStyles(feat, tile, styleOptions);
}
}
return this;
},
// 🍂method setFeatureStyle(id: Number): this
// Reverts the effects of a previous `setFeatureStyle` call.
resetFeatureStyle: function(id) {
delete this._overriddenStyles[id];
for (var tileKey in this._vectorTiles) {
var tile = this._vectorTiles[tileKey];
var features = tile._features;
var data = features[id];
if (data) {
var feat = data.feature;
var styleOptions = this.options.vectorTileLayerStyles[ data.layerName ] ||
L.Path.prototype.options;
this._updateStyles(feat, tile, styleOptions);
}
}
return this;
},
// 🍂method getDataLayerNames(): Array
// Returns an array of strings, with all the known names of data layers in
// the vector tiles displayed. Useful for introspection.
getDataLayerNames: function() {
return Object.keys(this._dataLayerNames);
},
_updateStyles: function(feat, renderer, styleOptions) {
styleOptions = (styleOptions instanceof Function) ?
styleOptions(feat.properties, renderer.getCoord().z) :
styleOptions;
if (!(styleOptions instanceof Array)) {
styleOptions = [styleOptions];
}
for (var j = 0; j < styleOptions.length; j++) {
var style = L.extend({}, L.Path.prototype.options, styleOptions[j]);
feat.updateStyle(renderer, style);
}
},
_createLayer: function(feat, pxPerExtent, layerStyle) {
var layer;
switch (feat.type) {
case 1:
layer = new PointSymbolizer(feat, pxPerExtent);
break;
case 2:
layer = new LineSymbolizer(feat, pxPerExtent);
break;
case 3:
layer = new FillSymbolizer(feat, pxPerExtent);
break;
}
if (this.options.interactive) {
layer.addEventParent(this);
}
return layer;
},
});
/*
* 🍂section Extension methods
*
* Classes inheriting from `VectorGrid` **must** define the `_getVectorTilePromise` private method.
*
* 🍂method getVectorTilePromise(coords: Object): Promise
* Given a `coords` object in the form of `{x: Number, y: Number, z: Number}`,
* this function must return a `Promise` for a vector tile.
*
*/
L.vectorGrid = function (options) {
return new L.VectorGrid(options);
};
var read = function (buffer, offset, isLE, mLen, nBytes) {
var e, m;
var eLen = nBytes * 8 - mLen - 1;
var eMax = (1 << eLen) - 1;
var eBias = eMax >> 1;
var nBits = -7;
var i = isLE ? (nBytes - 1) : 0;
var d = isLE ? -1 : 1;
var s = buffer[offset + i];
i += d;
e = s & ((1 << (-nBits)) - 1);
s >>= (-nBits);
nBits += eLen;
for (; nBits > 0; e = e * 256 + buffer[offset + i], i += d, nBits -= 8) {}
m = e & ((1 << (-nBits)) - 1);
e >>= (-nBits);
nBits += mLen;
for (; nBits > 0; m = m * 256 + buffer[offset + i], i += d, nBits -= 8) {}
if (e === 0) {
e = 1 - eBias;
} else if (e === eMax) {
return m ? NaN : ((s ? -1 : 1) * Infinity)
} else {
m = m + Math.pow(2, mLen);
e = e - eBias;
}
return (s ? -1 : 1) * m * Math.pow(2, e - mLen)
};
var write = function (buffer, value, offset, isLE, mLen, nBytes) {
var e, m, c;
var eLen = nBytes * 8 - mLen - 1;
var eMax = (1 << eLen) - 1;
var eBias = eMax >> 1;
var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0);
var i = isLE ? 0 : (nBytes - 1);
var d = isLE ? 1 : -1;
var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0;
value = Math.abs(value);
if (isNaN(value) || value === Infinity) {
m = isNaN(value) ? 1 : 0;
e = eMax;
} else {
e = Math.floor(Math.log(value) / Math.LN2);
if (value * (c = Math.pow(2, -e)) < 1) {
e--;
c *= 2;
}
if (e + eBias >= 1) {
value += rt / c;
} else {
value += rt * Math.pow(2, 1 - eBias);
}
if (value * c >= 2) {
e++;
c /= 2;
}
if (e + eBias >= eMax) {
m = 0;
e = eMax;
} else if (e + eBias >= 1) {
m = (value * c - 1) * Math.pow(2, mLen);
e = e + eBias;
} else {
m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen);
e = 0;
}
}
for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) {}
e = (e << mLen) | m;
eLen += mLen;
for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) {}
buffer[offset + i - d] |= s * 128;
};
var index$1 = {
read: read,
write: write
};
var index = Pbf;
var ieee754 = index$1;
function Pbf(buf) {
this.buf = ArrayBuffer.isView && ArrayBuffer.isView(buf) ? buf : new Uint8Array(buf || 0);
this.pos = 0;
this.type = 0;
this.length = this.buf.length;
}
Pbf.Varint = 0; // varint: int32, int64, uint32, uint64, sint32, sint64, bool, enum
Pbf.Fixed64 = 1; // 64-bit: double, fixed64, sfixed64
Pbf.Bytes = 2; // length-delimited: string, bytes, embedded messages, packed repeated fields
Pbf.Fixed32 = 5; // 32-bit: float, fixed32, sfixed32
var SHIFT_LEFT_32 = (1 << 16) * (1 << 16);
var SHIFT_RIGHT_32 = 1 / SHIFT_LEFT_32;
Pbf.prototype = {
destroy: function() {
this.buf = null;
},
// === READING =================================================================
readFields: function(readField, result, end) {
var this$1 = this;
end = end || this.length;
while (this.pos < end) {
var val = this$1.readVarint(),
tag = val >> 3,
startPos = this$1.pos;
this$1.type = val & 0x7;
readField(tag, result, this$1);
if (this$1.pos === startPos) { this$1.skip(val); }
}
return result;
},
readMessage: function(readField, result) {
return this.readFields(readField, result, this.readVarint() + this.pos);
},
readFixed32: function() {
var val = readUInt32(this.buf, this.pos);
this.pos += 4;
return val;
},
readSFixed32: function() {
var val = readInt32(this.buf, this.pos);
this.pos += 4;
return val;
},
// 64-bit int handling is based on github.com/dpw/node-buffer-more-ints (MIT-licensed)
readFixed64: function() {
var val = readUInt32(this.buf, this.pos) + readUInt32(this.buf, this.pos + 4) * SHIFT_LEFT_32;
this.pos += 8;
return val;
},
readSFixed64: function() {
var val = readUInt32(this.buf, this.pos) + readInt32(this.buf, this.pos + 4) * SHIFT_LEFT_32;
this.pos += 8;
return val;
},
readFloat: function() {
var val = ieee754.read(this.buf, this.pos, true, 23, 4);
this.pos += 4;
return val;
},
readDouble: function() {
var val = ieee754.read(this.buf, this.pos, true, 52, 8);
this.pos += 8;
return val;
},
readVarint: function(isSigned) {
var buf = this.buf,
val, b;
b = buf[this.pos++]; val = b & 0x7f; if (b < 0x80) { return val; }
b = buf[this.pos++]; val |= (b & 0x7f) << 7; if (b < 0x80) { return val; }
b = buf[this.pos++]; val |= (b & 0x7f) << 14; if (b < 0x80) { return val; }
b = buf[this.pos++]; val |= (b & 0x7f) << 21; if (b < 0x80) { return val; }
b = buf[this.pos]; val |= (b & 0x0f) << 28;
return readVarintRemainder(val, isSigned, this);
},
readVarint64: function() { // for compatibility with v2.0.1
return this.readVarint(true);
},
readSVarint: function() {
var num = this.readVarint();
return num % 2 === 1 ? (num + 1) / -2 : num / 2; // zigzag encoding
},
readBoolean: function() {
return Boolean(this.readVarint());
},
readString: function() {
var end = this.readVarint() + this.pos,
str = readUtf8(this.buf, this.pos, end);
this.pos = end;
return str;
},
readBytes: function() {
var end = this.readVarint() + this.pos,
buffer = this.buf.subarray(this.pos, end);
this.pos = end;
return buffer;
},
// verbose for performance reasons; doesn't affect gzipped size
readPackedVarint: function(arr, isSigned) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readVarint(isSigned)); }
return arr;
},
readPackedSVarint: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readSVarint()); }
return arr;
},
readPackedBoolean: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readBoolean()); }
return arr;
},
readPackedFloat: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readFloat()); }
return arr;
},
readPackedDouble: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readDouble()); }
return arr;
},
readPackedFixed32: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readFixed32()); }
return arr;
},
readPackedSFixed32: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readSFixed32()); }
return arr;
},
readPackedFixed64: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readFixed64()); }
return arr;
},
readPackedSFixed64: function(arr) {
var this$1 = this;
var end = readPackedEnd(this);
arr = arr || [];
while (this.pos < end) { arr.push(this$1.readSFixed64()); }
return arr;
},
skip: function(val) {
var type = val & 0x7;
if (type === Pbf.Varint) { while (this.buf[this.pos++] > 0x7f) {} }
else if (type === Pbf.Bytes) { this.pos = this.readVarint() + this.pos; }
else if (type === Pbf.Fixed32) { this.pos += 4; }
else if (type === Pbf.Fixed64) { this.pos += 8; }
else { throw new Error('Unimplemented type: ' + type); }
},
// === WRITING =================================================================
writeTag: function(tag, type) {
this.writeVarint((tag << 3) | type);
},
realloc: function(min) {
var length = this.length || 16;
while (length < this.pos + min) { length *= 2; }
if (length !== this.length) {
var buf = new Uint8Array(length);
buf.set(this.buf);
this.buf = buf;
this.length = length;
}
},
finish: function() {
this.length = this.pos;
this.pos = 0;
return this.buf.subarray(0, this.length);
},
writeFixed32: function(val) {
this.realloc(4);
writeInt32(this.buf, val, this.pos);
this.pos += 4;
},
writeSFixed32: function(val) {
this.realloc(4);
writeInt32(this.buf, val, this.pos);
this.pos += 4;
},
writeFixed64: function(val) {
this.realloc(8);
writeInt32(this.buf, val & -1, this.pos);
writeInt32(this.buf, Math.floor(val * SHIFT_RIGHT_32), this.pos + 4);
this.pos += 8;
},
writeSFixed64: function(val) {
this.realloc(8);
writeInt32(this.buf, val & -1, this.pos);
writeInt32(this.buf, Math.floor(val * SHIFT_RIGHT_32), this.pos + 4);
this.pos += 8;
},
writeVarint: function(val) {
val = +val || 0;
if (val > 0xfffffff || val < 0) {
writeBigVarint(val, this);
return;
}
this.realloc(4);
this.buf[this.pos++] = val & 0x7f | (val > 0x7f ? 0x80 : 0); if (val <= 0x7f) { return; }
this.buf[this.pos++] = ((val >>>= 7) & 0x7f) | (val > 0x7f ? 0x80 : 0); if (val <= 0x7f) { return; }
this.buf[this.pos++] = ((val >>>= 7) & 0x7f) | (val > 0x7f ? 0x80 : 0); if (val <= 0x7f) { return; }
this.buf[this.pos++] = (val >>> 7) & 0x7f;
},
writeSVarint: function(val) {
this.writeVarint(val < 0 ? -val * 2 - 1 : val * 2);
},
writeBoolean: function(val) {
this.writeVarint(Boolean(val));
},
writeString: function(str) {
str = String(str);
this.realloc(str.length * 4);
this.pos++; // reserve 1 byte for short string length
var startPos = this.pos;
// write the string directly to the buffer and see how much was written
this.pos = writeUtf8(this.buf, str, this.pos);
var len = this.pos - startPos;
if (len >= 0x80) { makeRoomForExtraLength(startPos, len, this); }
// finally, write the message length in the reserved place and restore the position
this.pos = startPos - 1;
this.writeVarint(len);
this.pos += len;
},
writeFloat: function(val) {
this.realloc(4);
ieee754.write(this.buf, val, this.pos, true, 23, 4);
this.pos += 4;
},
writeDouble: function(val) {
this.realloc(8);
ieee754.write(this.buf, val, this.pos, true, 52, 8);
this.pos += 8;
},
writeBytes: function(buffer) {
var this$1 = this;
var len = buffer.length;
this.writeVarint(len);
this.realloc(len);
for (var i = 0; i < len; i++) { this$1.buf[this$1.pos++] = buffer[i]; }
},
writeRawMessage: function(fn, obj) {
this.pos++; // reserve 1 byte for short message length
// write the message directly to the buffer and see how much was written
var startPos = this.pos;
fn(obj, this);
var len = this.pos - startPos;
if (len >= 0x80) { makeRoomForExtraLength(startPos, len, this); }
// finally, write the message length in the reserved place and restore the position
this.pos = startPos - 1;
this.writeVarint(len);
this.pos += len;
},
writeMessage: function(tag, fn, obj) {
this.writeTag(tag, Pbf.Bytes);
this.writeRawMessage(fn, obj);
},
writePackedVarint: function(tag, arr) { this.writeMessage(tag, writePackedVarint, arr); },
writePackedSVarint: function(tag, arr) { this.writeMessage(tag, writePackedSVarint, arr); },
writePackedBoolean: function(tag, arr) { this.writeMessage(tag, writePackedBoolean, arr); },
writePackedFloat: function(tag, arr) { this.writeMessage(tag, writePackedFloat, arr); },
writePackedDouble: function(tag, arr) { this.writeMessage(tag, writePackedDouble, arr); },
writePackedFixed32: function(tag, arr) { this.writeMessage(tag, writePackedFixed32, arr); },
writePackedSFixed32: function(tag, arr) { this.writeMessage(tag, writePackedSFixed32, arr); },
writePackedFixed64: function(tag, arr) { this.writeMessage(tag, writePackedFixed64, arr); },
writePackedSFixed64: function(tag, arr) { this.writeMessage(tag, writePackedSFixed64, arr); },
writeBytesField: function(tag, buffer) {
this.writeTag(tag, Pbf.Bytes);
this.writeBytes(buffer);
},
writeFixed32Field: function(tag, val) {
this.writeTag(tag, Pbf.Fixed32);
this.writeFixed32(val);
},
writeSFixed32Field: function(tag, val) {
this.writeTag(tag, Pbf.Fixed32);
this.writeSFixed32(val);
},
writeFixed64Field: function(tag, val) {
this.writeTag(tag, Pbf.Fixed64);
this.writeFixed64(val);
},
writeSFixed64Field: function(tag, val) {
this.writeTag(tag, Pbf.Fixed64);
this.writeSFixed64(val);
},
writeVarintField: function(tag, val) {
this.writeTag(tag, Pbf.Varint);
this.writeVarint(val);
},
writeSVarintField: function(tag, val) {
this.writeTag(tag, Pbf.Varint);
this.writeSVarint(val);
},
writeStringField: function(tag, str) {
this.writeTag(tag, Pbf.Bytes);
this.writeString(str);
},
writeFloatField: function(tag, val) {
this.writeTag(tag, Pbf.Fixed32);
this.writeFloat(val);
},
writeDoubleField: function(tag, val) {
this.writeTag(tag, Pbf.Fixed64);
this.writeDouble(val);
},
writeBooleanField: function(tag, val) {
this.writeVarintField(tag, Boolean(val));
}
};
function readVarintRemainder(l, s, p) {
var buf = p.buf,
h, b;
b = buf[p.pos++]; h = (b & 0x70) >> 4; if (b < 0x80) { return toNum(l, h, s); }
b = buf[p.pos++]; h |= (b & 0x7f) << 3; if (b < 0x80) { return toNum(l, h, s); }
b = buf[p.pos++]; h |= (b & 0x7f) << 10; if (b < 0x80) { return toNum(l, h, s); }
b = buf[p.pos++]; h |= (b & 0x7f) << 17; if (b < 0x80) { return toNum(l, h, s); }
b = buf[p.pos++]; h |= (b & 0x7f) << 24; if (b < 0x80) { return toNum(l, h, s); }
b = buf[p.pos++]; h |= (b & 0x01) << 31; if (b < 0x80) { return toNum(l, h, s); }
throw new Error('Expected varint not more than 10 bytes');
}
function readPackedEnd(pbf) {
return pbf.type === Pbf.Bytes ?
pbf.readVarint() + pbf.pos : pbf.pos + 1;
}
function toNum(low, high, isSigned) {
if (isSigned) {
return high * 0x100000000 + (low >>> 0);
}
return ((high >>> 0) * 0x100000000) + (low >>> 0);
}
function writeBigVarint(val, pbf) {
var low, high;
if (val >= 0) {
low = (val % 0x100000000) | 0;
high = (val / 0x100000000) | 0;
} else {
low = ~(-val % 0x100000000);
high = ~(-val / 0x100000000);
if (low ^ 0xffffffff) {
low = (low + 1) | 0;
} else {
low = 0;
high = (high + 1) | 0;
}
}
if (val >= 0x10000000000000000 || val < -0x10000000000000000) {
throw new Error('Given varint doesn\'t fit into 10 bytes');
}
pbf.realloc(10);
writeBigVarintLow(low, high, pbf);
writeBigVarintHigh(high, pbf);
}
function writeBigVarintLow(low, high, pbf) {
pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7;
pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7;
pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7;
pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7;
pbf.buf[pbf.pos] = low & 0x7f;
}
function writeBigVarintHigh(high, pbf) {
var lsb = (high & 0x07) << 4;
pbf.buf[pbf.pos++] |= lsb | ((high >>>= 3) ? 0x80 : 0); if (!high) { return; }
pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; }
pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; }
pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; }
pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; }
pbf.buf[pbf.pos++] = high & 0x7f;
}
function makeRoomForExtraLength(startPos, len, pbf) {
var extraLen =
len <= 0x3fff ? 1 :
len <= 0x1fffff ? 2 :
len <= 0xfffffff ? 3 : Math.ceil(Math.log(len) / (Math.LN2 * 7));
// if 1 byte isn't enough for encoding message length, shift the data to the right
pbf.realloc(extraLen);
for (var i = pbf.pos - 1; i >= startPos; i--) { pbf.buf[i + extraLen] = pbf.buf[i]; }
}
function writePackedVarint(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeVarint(arr[i]); } }
function writePackedSVarint(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeSVarint(arr[i]); } }
function writePackedFloat(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeFloat(arr[i]); } }
function writePackedDouble(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeDouble(arr[i]); } }
function writePackedBoolean(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeBoolean(arr[i]); } }
function writePackedFixed32(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeFixed32(arr[i]); } }
function writePackedSFixed32(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeSFixed32(arr[i]); } }
function writePackedFixed64(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeFixed64(arr[i]); } }
function writePackedSFixed64(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeSFixed64(arr[i]); } }
// Buffer code below from https://github.com/feross/buffer, MIT-licensed
function readUInt32(buf, pos) {
return ((buf[pos]) |
(buf[pos + 1] << 8) |
(buf[pos + 2] << 16)) +
(buf[pos + 3] * 0x1000000);
}
function writeInt32(buf, val, pos) {
buf[pos] = val;
buf[pos + 1] = (val >>> 8);
buf[pos + 2] = (val >>> 16);
buf[pos + 3] = (val >>> 24);
}
function readInt32(buf, pos) {
return ((buf[pos]) |
(buf[pos + 1] << 8) |
(buf[pos + 2] << 16)) +
(buf[pos + 3] << 24);
}
function readUtf8(buf, pos, end) {
var str = '';
var i = pos;
while (i < end) {
var b0 = buf[i];
var c = null; // codepoint
var bytesPerSequence =
b0 > 0xEF ? 4 :
b0 > 0xDF ? 3 :
b0 > 0xBF ? 2 : 1;
if (i + bytesPerSequence > end) { break; }
var b1, b2, b3;
if (bytesPerSequence === 1) {
if (b0 < 0x80) {
c = b0;
}
} else if (bytesPerSequence === 2) {
b1 = buf[i + 1];
if ((b1 & 0xC0) === 0x80) {
c = (b0 & 0x1F) << 0x6 | (b1 & 0x3F);
if (c <= 0x7F) {
c = null;
}
}
} else if (bytesPerSequence === 3) {
b1 = buf[i + 1];
b2 = buf[i + 2];
if ((b1 & 0xC0) === 0x80 && (b2 & 0xC0) === 0x80) {
c = (b0 & 0xF) << 0xC | (b1 & 0x3F) << 0x6 | (b2 & 0x3F);
if (c <= 0x7FF || (c >= 0xD800 && c <= 0xDFFF)) {
c = null;
}
}
} else if (bytesPerSequence === 4) {
b1 = buf[i + 1];
b2 = buf[i + 2];
b3 = buf[i + 3];
if ((b1 & 0xC0) === 0x80 && (b2 & 0xC0) === 0x80 && (b3 & 0xC0) === 0x80) {
c = (b0 & 0xF) << 0x12 | (b1 & 0x3F) << 0xC | (b2 & 0x3F) << 0x6 | (b3 & 0x3F);
if (c <= 0xFFFF || c >= 0x110000) {
c = null;
}
}
}
if (c === null) {
c = 0xFFFD;
bytesPerSequence = 1;
} else if (c > 0xFFFF) {
c -= 0x10000;
str += String.fromCharCode(c >>> 10 & 0x3FF | 0xD800);
c = 0xDC00 | c & 0x3FF;
}
str += String.fromCharCode(c);
i += bytesPerSequence;
}
return str;
}
function writeUtf8(buf, str, pos) {
for (var i = 0, c, lead; i < str.length; i++) {
c = str.charCodeAt(i); // code point
if (c > 0xD7FF && c < 0xE000) {
if (lead) {
if (c < 0xDC00) {
buf[pos++] = 0xEF;
buf[pos++] = 0xBF;
buf[pos++] = 0xBD;
lead = c;
continue;
} else {
c = lead - 0xD800 << 10 | c - 0xDC00 | 0x10000;
lead = null;
}
} else {
if (c > 0xDBFF || (i + 1 === str.length)) {
buf[pos++] = 0xEF;
buf[pos++] = 0xBF;
buf[pos++] = 0xBD;
} else {
lead = c;
}
continue;
}
} else if (lead) {
buf[pos++] = 0xEF;
buf[pos++] = 0xBF;
buf[pos++] = 0xBD;
lead = null;
}
if (c < 0x80) {
buf[pos++] = c;
} else {
if (c < 0x800) {
buf[pos++] = c >> 0x6 | 0xC0;
} else {
if (c < 0x10000) {
buf[pos++] = c >> 0xC | 0xE0;
} else {
buf[pos++] = c >> 0x12 | 0xF0;
buf[pos++] = c >> 0xC & 0x3F | 0x80;
}
buf[pos++] = c >> 0x6 & 0x3F | 0x80;
}
buf[pos++] = c & 0x3F | 0x80;
}
}
return pos;
}
var index$5 = Point$1;
function Point$1(x, y) {
this.x = x;
this.y = y;
}
Point$1.prototype = {
clone: function() { return new Point$1(this.x, this.y); },
add: function(p) { return this.clone()._add(p); },
sub: function(p) { return this.clone()._sub(p); },
mult: function(k) { return this.clone()._mult(k); },
div: function(k) { return this.clone()._div(k); },
rotate: function(a) { return this.clone()._rotate(a); },
matMult: function(m) { return this.clone()._matMult(m); },
unit: function() { return this.clone()._unit(); },
perp: function() { return this.clone()._perp(); },
round: function() { return this.clone()._round(); },
mag: function() {
return Math.sqrt(this.x * this.x + this.y * this.y);
},
equals: function(p) {
return this.x === p.x &&
this.y === p.y;
},
dist: function(p) {
return Math.sqrt(this.distSqr(p));
},
distSqr: function(p) {
var dx = p.x - this.x,
dy = p.y - this.y;
return dx * dx + dy * dy;
},
angle: function() {
return Math.atan2(this.y, this.x);
},
angleTo: function(b) {
return Math.atan2(this.y - b.y, this.x - b.x);
},
angleWith: function(b) {
return this.angleWithSep(b.x, b.y);
},
// Find the angle of the two vectors, solving the formula for the cross product a x b = |a||b|sin(θ) for θ.
angleWithSep: function(x, y) {
return Math.atan2(
this.x * y - this.y * x,
this.x * x + this.y * y);
},
_matMult: function(m) {
var x = m[0] * this.x + m[1] * this.y,
y = m[2] * this.x + m[3] * this.y;
this.x = x;
this.y = y;
return this;
},
_add: function(p) {
this.x += p.x;
this.y += p.y;
return this;
},
_sub: function(p) {
this.x -= p.x;
this.y -= p.y;
return this;
},
_mult: function(k) {
this.x *= k;
this.y *= k;
return this;
},
_div: function(k) {
this.x /= k;
this.y /= k;
return this;
},
_unit: function() {
this._div(this.mag());
return this;
},
_perp: function() {
var y = this.y;
this.y = this.x;
this.x = -y;
return this;
},
_rotate: function(angle) {
var cos = Math.cos(angle),
sin = Math.sin(angle),
x = cos * this.x - sin * this.y,
y = sin * this.x + cos * this.y;
this.x = x;
this.y = y;
return this;
},
_round: function() {
this.x = Math.round(this.x);
this.y = Math.round(this.y);
return this;
}
};
// constructs Point from an array if necessary
Point$1.convert = function (a) {
if (a instanceof Point$1) {
return a;
}
if (Array.isArray(a)) {
return new Point$1(a[0], a[1]);
}
return a;
};
var Point = index$5;
var vectortilefeature = VectorTileFeature$2;
function VectorTileFeature$2(pbf, end, extent, keys, values) {
// Public
this.properties = {};
this.extent = extent;
this.type = 0;
// Private
this._pbf = pbf;
this._geometry = -1;
this._keys = keys;
this._values = values;
pbf.readFields(readFeature, this, end);
}
function readFeature(tag, feature, pbf) {
if (tag == 1) { feature.id = pbf.readVarint(); }
else if (tag == 2) { readTag(pbf, feature); }
else if (tag == 3) { feature.type = pbf.readVarint(); }
else if (tag == 4) { feature._geometry = pbf.pos; }
}
function readTag(pbf, feature) {
var end = pbf.readVarint() + pbf.pos;
while (pbf.pos < end) {
var key = feature._keys[pbf.readVarint()],
value = feature._values[pbf.readVarint()];
feature.properties[key] = value;
}
}
VectorTileFeature$2.types = ['Unknown', 'Point', 'LineString', 'Polygon'];
VectorTileFeature$2.prototype.loadGeometry = function() {
var pbf = this._pbf;
pbf.pos = this._geometry;
var end = pbf.readVarint() + pbf.pos,
cmd = 1,
length = 0,
x = 0,
y = 0,
lines = [],
line;
while (pbf.pos < end) {
if (!length) {
var cmdLen = pbf.readVarint();
cmd = cmdLen & 0x7;
length = cmdLen >> 3;
}
length--;
if (cmd === 1 || cmd === 2) {
x += pbf.readSVarint();
y += pbf.readSVarint();
if (cmd === 1) { // moveTo
if (line) { lines.push(line); }
line = [];
}
line.push(new Point(x, y));
} else if (cmd === 7) {
// Workaround for https://github.com/mapbox/mapnik-vector-tile/issues/90
if (line) {
line.push(line[0].clone()); // closePolygon
}
} else {
throw new Error('unknown command ' + cmd);
}
}
if (line) { lines.push(line); }
return lines;
};
VectorTileFeature$2.prototype.bbox = function() {
var pbf = this._pbf;
pbf.pos = this._geometry;
var end = pbf.readVarint() + pbf.pos,
cmd = 1,
length = 0,
x = 0,
y = 0,
x1 = Infinity,
x2 = -Infinity,
y1 = Infinity,
y2 = -Infinity;
while (pbf.pos < end) {
if (!length) {
var cmdLen = pbf.readVarint();
cmd = cmdLen & 0x7;
length = cmdLen >> 3;
}
length--;
if (cmd === 1 || cmd === 2) {
x += pbf.readSVarint();
y += pbf.readSVarint();
if (x < x1) { x1 = x; }
if (x > x2) { x2 = x; }
if (y < y1) { y1 = y; }
if (y > y2) { y2 = y; }
} else if (cmd !== 7) {
throw new Error('unknown command ' + cmd);
}
}
return [x1, y1, x2, y2];
};
VectorTileFeature$2.prototype.toGeoJSON = function(x, y, z) {
var size = this.extent * Math.pow(2, z),
x0 = this.extent * x,
y0 = this.extent * y,
coords = this.loadGeometry(),
type = VectorTileFeature$2.types[this.type],
i, j;
function project(line) {
for (var j = 0; j < line.length; j++) {
var p = line[j], y2 = 180 - (p.y + y0) * 360 / size;
line[j] = [
(p.x + x0) * 360 / size - 180,
360 / Math.PI * Math.atan(Math.exp(y2 * Math.PI / 180)) - 90
];
}
}
switch (this.type) {
case 1:
var points = [];
for (i = 0; i < coords.length; i++) {
points[i] = coords[i][0];
}
coords = points;
project(coords);
break;
case 2:
for (i = 0; i < coords.length; i++) {
project(coords[i]);
}
break;
case 3:
coords = classifyRings(coords);
for (i = 0; i < coords.length; i++) {
for (j = 0; j < coords[i].length; j++) {
project(coords[i][j]);
}
}
break;
}
if (coords.length === 1) {
coords = coords[0];
} else {
type = 'Multi' + type;
}
var result = {
type: "Feature",
geometry: {
type: type,
coordinates: coords
},
properties: this.properties
};
if ('id' in this) {
result.id = this.id;
}
return result;
};
// classifies an array of rings into polygons with outer rings and holes
function classifyRings(rings) {
var len = rings.length;
if (len <= 1) { return [rings]; }
var polygons = [],
polygon,
ccw;
for (var i = 0; i < len; i++) {
var area = signedArea(rings[i]);
if (area === 0) { continue; }
if (ccw === undefined) { ccw = area < 0; }
if (ccw === area < 0) {
if (polygon) { polygons.push(polygon); }
polygon = [rings[i]];
} else {
polygon.push(rings[i]);
}
}
if (polygon) { polygons.push(polygon); }
return polygons;
}
function signedArea(ring) {
var sum = 0;
for (var i = 0, len = ring.length, j = len - 1, p1, p2; i < len; j = i++) {
p1 = ring[i];
p2 = ring[j];
sum += (p2.x - p1.x) * (p1.y + p2.y);
}
return sum;
}
var VectorTileFeature$1 = vectortilefeature;
var vectortilelayer = VectorTileLayer$2;
function VectorTileLayer$2(pbf, end) {
// Public
this.version = 1;
this.name = null;
this.extent = 4096;
this.length = 0;
// Private
this._pbf = pbf;
this._keys = [];
this._values = [];
this._features = [];
pbf.readFields(readLayer, this, end);
this.length = this._features.length;
}
function readLayer(tag, layer, pbf) {
if (tag === 15) { layer.version = pbf.readVarint(); }
else if (tag === 1) { layer.name = pbf.readString(); }
else if (tag === 5) { layer.extent = pbf.readVarint(); }
else if (tag === 2) { layer._features.push(pbf.pos); }
else if (tag === 3) { layer._keys.push(pbf.readString()); }
else if (tag === 4) { layer._values.push(readValueMessage(pbf)); }
}
function readValueMessage(pbf) {
var value = null,
end = pbf.readVarint() + pbf.pos;
while (pbf.pos < end) {
var tag = pbf.readVarint() >> 3;
value = tag === 1 ? pbf.readString() :
tag === 2 ? pbf.readFloat() :
tag === 3 ? pbf.readDouble() :
tag === 4 ? pbf.readVarint64() :
tag === 5 ? pbf.readVarint() :
tag === 6 ? pbf.readSVarint() :
tag === 7 ? pbf.readBoolean() : null;
}
return value;
}
// return feature `i` from this layer as a `VectorTileFeature`
VectorTileLayer$2.prototype.feature = function(i) {
if (i < 0 || i >= this._features.length) { throw new Error('feature index out of bounds'); }
this._pbf.pos = this._features[i];
var end = this._pbf.readVarint() + this._pbf.pos;
return new VectorTileFeature$1(this._pbf, end, this.extent, this._keys, this._values);
};
var VectorTileLayer$1 = vectortilelayer;
var vectortile = VectorTile$1;
function VectorTile$1(pbf, end) {
this.layers = pbf.readFields(readTile, {}, end);
}
function readTile(tag, layers, pbf) {
if (tag === 3) {
var layer = new VectorTileLayer$1(pbf, pbf.readVarint() + pbf.pos);
if (layer.length) { layers[layer.name] = layer; }
}
}
var VectorTile = vectortile;
/*
* 🍂class VectorGrid.Protobuf
* 🍂extends VectorGrid
*
* A `VectorGrid` for vector tiles fetched from the internet.
* Tiles are supposed to be protobufs (AKA "protobuffer" or "Protocol Buffers"),
* containing data which complies with the
* [MapBox Vector Tile Specification](https://github.com/mapbox/vector-tile-spec/tree/master/2.1).
*
* This is the format used by:
* - Mapbox Vector Tiles
* - Mapzen Vector Tiles
* - ESRI Vector Tiles
* - [OpenMapTiles hosted Vector Tiles](https://openmaptiles.com/hosting/)
*
* 🍂example
*
* You must initialize a `VectorGrid.Protobuf` with a URL template, just like in
* `L.TileLayer`s. The difference is that the template must point to vector tiles
* (usually `.pbf` or `.mvt`) instead of raster (`.png` or `.jpg`) tiles, and that
* you should define the styling for all the features.
*
* <br><br>
*
* For OpenMapTiles, with a key from [https://openmaptiles.org/docs/host/use-cdn/](https://openmaptiles.org/docs/host/use-cdn/),
* initialization looks like this:
*
* ```
* L.vectorGrid.protobuf("https://free-{s}.tilehosting.com/data/v3/{z}/{x}/{y}.pbf.pict?key={key}", {
* vectorTileLayerStyles: { ... },
* subdomains: "0123",
* key: 'abcdefghi01234567890',
* maxNativeZoom: 14
* }).addTo(map);
* ```
*
* And for Mapbox vector tiles, it looks like this:
*
* ```
* L.vectorGrid.protobuf("https://{s}.tiles.mapbox.com/v4/mapbox.mapbox-streets-v6/{z}/{x}/{y}.vector.pbf?access_token={token}", {
* vectorTileLayerStyles: { ... },
* subdomains: "abcd",
* token: "pk.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRTS.TUVWXTZ0123456789abcde"
* }).addTo(map);
* ```
*/
L.VectorGrid.Protobuf = L.VectorGrid.extend({
options: {
// 🍂section
// As with `L.TileLayer`, the URL template might contain a reference to
// any option (see the example above and note the `{key}` or `token` in the URL
// template, and the corresponding option).
//
// 🍂option subdomains: String = 'abc'
// Akin to the `subdomains` option for `L.TileLayer`.
subdomains: 'abc', // Like L.TileLayer
//
// 🍂option fetchOptions: Object = {}
// options passed to `fetch`, e.g. {credentials: 'same-origin'} to send cookie for the current domain
fetchOptions: {}
},
initialize: function(url, options) {
// Inherits options from geojson-vt!
// this._slicer = geojsonvt(geojson, options);
this._url = url;
L.VectorGrid.prototype.initialize.call(this, options);
},
// 🍂method setUrl(url: String, noRedraw?: Boolean): this
// Updates the layer's URL template and redraws it (unless `noRedraw` is set to `true`).
setUrl: function(url, noRedraw) {
this._url = url;
if (!noRedraw) {
this.redraw();
}
return this;
},
_getSubdomain: L.TileLayer.prototype._getSubdomain,
_getVectorTilePromise: function(coords) {
var data = {
s: this._getSubdomain(coords),
x: coords.x,
y: coords.y,
z: coords.z
// z: this._getZoomForUrl() /// TODO: Maybe replicate TileLayer's maxNativeZoom
};
if (this._map && !this._map.options.crs.infinite) {
var invertedY = this._globalTileRange.max.y - coords.y;
if (this.options.tms) { // Should this option be available in Leaflet.VectorGrid?
data['y'] = invertedY;
}
data['-y'] = invertedY;
}
var tileUrl = L.Util.template(this._url, L.extend(data, this.options));
return fetch(tileUrl, this.options.fetchOptions).then(function(response){
if (!response.ok) {
return {layers:[]};
}
return response.blob().then( function (blob) {
// console.log(blob);
var reader = new FileReader();
return new Promise(function(resolve){
reader.addEventListener("loadend", function() {
// reader.result contains the contents of blob as a typed array
// blob.type === 'application/x-protobuf'
var pbf = new index( reader.result );
// console.log(pbf);
return resolve(new VectorTile( pbf ));
});
reader.readAsArrayBuffer(blob);
});
});
}).then(function(json){
// console.log('Vector tile:', json.layers);
// console.log('Vector tile water:', json.layers.water); // Instance of VectorTileLayer
// Normalize feature getters into actual instanced features
for (var layerName in json.layers) {
var feats = [];
for (var i=0; i<json.layers[layerName].length; i++) {
var feat = json.layers[layerName].feature(i);
feat.geometry = feat.loadGeometry();
feats.push(feat);
}
json.layers[layerName].features = feats;
}
return json;
});
}
});
// 🍂factory L.vectorGrid.protobuf(url: String, options)
// Instantiates a new protobuf VectorGrid with the given URL template and options
L.vectorGrid.protobuf = function (url, options) {
return new L.VectorGrid.Protobuf(url, options);
};
var workerCode = __$strToBlobUri("'use strict';\n\nvar simplify_1 = simplify$1;\n\n// calculate simplification data using optimized Douglas-Peucker algorithm\n\nfunction simplify$1(points, tolerance) {\n\n var sqTolerance = tolerance * tolerance,\n len = points.length,\n first = 0,\n last = len - 1,\n stack = [],\n i, maxSqDist, sqDist, index;\n\n // always retain the endpoints (1 is the max value)\n points[first][2] = 1;\n points[last][2] = 1;\n\n // avoid recursion by using a stack\n while (last) {\n\n maxSqDist = 0;\n\n for (i = first + 1; i < last; i++) {\n sqDist = getSqSegDist(points[i], points[first], points[last]);\n\n if (sqDist > maxSqDist) {\n index = i;\n maxSqDist = sqDist;\n }\n }\n\n if (maxSqDist > sqTolerance) {\n points[index][2] = maxSqDist; // save the point importance in squared pixels as a z coordinate\n stack.push(first);\n stack.push(index);\n first = index;\n\n } else {\n last = stack.pop();\n first = stack.pop();\n }\n }\n}\n\n// square distance from a point to a segment\nfunction getSqSegDist(p, a, b) {\n\n var x = a[0], y = a[1],\n bx = b[0], by = b[1],\n px = p[0], py = p[1],\n dx = bx - x,\n dy = by - y;\n\n if (dx !== 0 || dy !== 0) {\n\n var t = ((px - x) * dx + (py - y) * dy) / (dx * dx + dy * dy);\n\n if (t > 1) {\n x = bx;\n y = by;\n\n } else if (t > 0) {\n x += dx * t;\n y += dy * t;\n }\n }\n\n dx = px - x;\n dy = py - y;\n\n return dx * dx + dy * dy;\n}\n\nvar convert_1 = convert$1;\n\nvar simplify = simplify_1;\n\n// converts GeoJSON feature into an intermediate projected JSON vector format with simplification data\n\nfunction convert$1(data, tolerance) {\n var features = [];\n\n if (data.type === 'FeatureCollection') {\n for (var i = 0; i < data.features.length; i++) {\n convertFeature(features, data.features[i], tolerance);\n }\n } else if (data.type === 'Feature') {\n convertFeature(features, data, tolerance);\n\n } else {\n // single geometry or a geometry collection\n convertFeature(features, {geometry: data}, tolerance);\n }\n return features;\n}\n\nfunction convertFeature(features, feature, tolerance) {\n if (feature.geometry === null) {\n // ignore features with null geometry\n return;\n }\n\n var geom = feature.geometry,\n type = geom.type,\n coords = geom.coordinates,\n tags = feature.properties,\n i, j, rings, projectedRing;\n\n if (type === 'Point') {\n features.push(create(tags, 1, [projectPoint(coords)]));\n\n } else if (type === 'MultiPoint') {\n features.push(create(tags, 1, project(coords)));\n\n } else if (type === 'LineString') {\n features.push(create(tags, 2, [project(coords, tolerance)]));\n\n } else if (type === 'MultiLineString' || type === 'Polygon') {\n rings = [];\n for (i = 0; i < coords.length; i++) {\n projectedRing = project(coords[i], tolerance);\n if (type === 'Polygon') { projectedRing.outer = (i === 0); }\n rings.push(projectedRing);\n }\n features.push(create(tags, type === 'Polygon' ? 3 : 2, rings));\n\n } else if (type === 'MultiPolygon') {\n rings = [];\n for (i = 0; i < coords.length; i++) {\n for (j = 0; j < coords[i].length; j++) {\n projectedRing = project(coords[i][j], tolerance);\n projectedRing.outer = (j === 0);\n rings.push(projectedRing);\n }\n }\n features.push(create(tags, 3, rings));\n\n } else if (type === 'GeometryCollection') {\n for (i = 0; i < geom.geometries.length; i++) {\n convertFeature(features, {\n geometry: geom.geometries[i],\n properties: tags\n }, tolerance);\n }\n\n } else {\n throw new Error('Input data is not a valid GeoJSON object.');\n }\n}\n\nfunction create(tags, type, geometry) {\n var feature = {\n geometry: geometry,\n type: type,\n tags: tags || null,\n min: [2, 1], // initial bbox values;\n max: [-1, 0] // note that coords are usually in [0..1] range\n };\n calcBBox(feature);\n return feature;\n}\n\nfunction project(lonlats, tolerance) {\n var projected = [];\n for (var i = 0; i < lonlats.length; i++) {\n projected.push(projectPoint(lonlats[i]));\n }\n if (tolerance) {\n simplify(projected, tolerance);\n calcSize(projected);\n }\n return projected;\n}\n\nfunction projectPoint(p) {\n var sin = Math.sin(p[1] * Math.PI / 180),\n x = (p[0] / 360 + 0.5),\n y = (0.5 - 0.25 * Math.log((1 + sin) / (1 - sin)) / Math.PI);\n\n y = y < 0 ? 0 :\n y > 1 ? 1 : y;\n\n return [x, y, 0];\n}\n\n// calculate area and length of the poly\nfunction calcSize(points) {\n var area = 0,\n dist = 0;\n\n for (var i = 0, a, b; i < points.length - 1; i++) {\n a = b || points[i];\n b = points[i + 1];\n\n area += a[0] * b[1] - b[0] * a[1];\n\n // use Manhattan distance instead of Euclidian one to avoid expensive square root computation\n dist += Math.abs(b[0] - a[0]) + Math.abs(b[1] - a[1]);\n }\n points.area = Math.abs(area / 2);\n points.dist = dist;\n}\n\n// calculate the feature bounding box for faster clipping later\nfunction calcBBox(feature) {\n var geometry = feature.geometry,\n min = feature.min,\n max = feature.max;\n\n if (feature.type === 1) { calcRingBBox(min, max, geometry); }\n else { for (var i = 0; i < geometry.length; i++) { calcRingBBox(min, max, geometry[i]); } }\n\n return feature;\n}\n\nfunction calcRingBBox(min, max, points) {\n for (var i = 0, p; i < points.length; i++) {\n p = points[i];\n min[0] = Math.min(p[0], min[0]);\n max[0] = Math.max(p[0], max[0]);\n min[1] = Math.min(p[1], min[1]);\n max[1] = Math.max(p[1], max[1]);\n }\n}\n\nvar tile = transformTile;\nvar point = transformPoint;\n\n// Transforms the coordinates of each feature in the given tile from\n// mercator-projected space into (extent x extent) tile space.\nfunction transformTile(tile, extent) {\n if (tile.transformed) { return tile; }\n\n var z2 = tile.z2,\n tx = tile.x,\n ty = tile.y,\n i, j, k;\n\n for (i = 0; i < tile.features.length; i++) {\n var feature = tile.features[i],\n geom = feature.geometry,\n type = feature.type;\n\n if (type === 1) {\n for (j = 0; j < geom.length; j++) { geom[j] = transformPoint(geom[j], extent, z2, tx, ty); }\n\n } else {\n for (j = 0; j < geom.length; j++) {\n var ring = geom[j];\n for (k = 0; k < ring.length; k++) { ring[k] = transformPoint(ring[k], extent, z2, tx, ty); }\n }\n }\n }\n\n tile.transformed = true;\n\n return tile;\n}\n\nfunction transformPoint(p, extent, z2, tx, ty) {\n var x = Math.round(extent * (p[0] * z2 - tx)),\n y = Math.round(extent * (p[1] * z2 - ty));\n return [x, y];\n}\n\nvar transform$1 = {\n tile: tile,\n point: point\n};\n\nvar clip_1 = clip$1;\n\n/* clip features between two axis-parallel lines:\n * | |\n * ___|___ | /\n * / | \____|____/\n * | |\n */\n\nfunction clip$1(features, scale, k1, k2, axis, intersect, minAll, maxAll) {\n\n k1 /= scale;\n k2 /= scale;\n\n if (minAll >= k1 && maxAll <= k2) { return features; } // trivial accept\n else if (minAll > k2 || maxAll < k1) { return null; } // trivial reject\n\n var clipped = [];\n\n for (var i = 0; i < features.length; i++) {\n\n var feature = features[i],\n geometry = feature.geometry,\n type = feature.type,\n min, max;\n\n min = feature.min[axis];\n max = feature.max[axis];\n\n if (min >= k1 && max <= k2) { // trivial accept\n clipped.push(feature);\n continue;\n } else if (min > k2 || max < k1) { continue; } // trivial reject\n\n var slices = type === 1 ?\n clipPoints(geometry, k1, k2, axis) :\n clipGeometry(geometry, k1, k2, axis, intersect, type === 3);\n\n if (slices.length) {\n // if a feature got clipped, it will likely get clipped on the next zoom level as well,\n // so there's no need to recalculate bboxes\n clipped.push({\n geometry: slices,\n type: type,\n tags: features[i].tags || null,\n min: feature.min,\n max: feature.max\n });\n }\n }\n\n return clipped.length ? clipped : null;\n}\n\nfunction clipPoints(geometry, k1, k2, axis) {\n var slice = [];\n\n for (var i = 0; i < geometry.length; i++) {\n var a = geometry[i],\n ak = a[axis];\n\n if (ak >= k1 && ak <= k2) { slice.push(a); }\n }\n return slice;\n}\n\nfunction clipGeometry(geometry, k1, k2, axis, intersect, closed) {\n\n var slices = [];\n\n for (var i = 0; i < geometry.length; i++) {\n\n var ak = 0,\n bk = 0,\n b = null,\n points = geometry[i],\n area = points.area,\n dist = points.dist,\n outer = points.outer,\n len = points.length,\n a, j, last;\n\n var slice = [];\n\n for (j = 0; j < len - 1; j++) {\n a = b || points[j];\n b = points[j + 1];\n ak = bk || a[axis];\n bk = b[axis];\n\n if (ak < k1) {\n\n if ((bk > k2)) { // ---|-----|-->\n slice.push(intersect(a, b, k1), intersect(a, b, k2));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n\n } else if (bk >= k1) { slice.push(intersect(a, b, k1)); } // ---|--> |\n\n } else if (ak > k2) {\n\n if ((bk < k1)) { // <--|-----|---\n slice.push(intersect(a, b, k2), intersect(a, b, k1));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n\n } else if (bk <= k2) { slice.push(intersect(a, b, k2)); } // | <--|---\n\n } else {\n\n slice.push(a);\n\n if (bk < k1) { // <--|--- |\n slice.push(intersect(a, b, k1));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n\n } else if (bk > k2) { // | ---|-->\n slice.push(intersect(a, b, k2));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n }\n // | --> |\n }\n }\n\n // add the last point\n a = points[len - 1];\n ak = a[axis];\n if (ak >= k1 && ak <= k2) { slice.push(a); }\n\n // close the polygon if its endpoints are not the same after clipping\n\n last = slice[slice.length - 1];\n if (closed && last && (slice[0][0] !== last[0] || slice[0][1] !== last[1])) { slice.push(slice[0]); }\n\n // add the final slice\n newSlice(slices, slice, area, dist, outer);\n }\n\n return slices;\n}\n\nfunction newSlice(slices, slice, area, dist, outer) {\n if (slice.length) {\n // we don't recalculate the area/length of the unclipped geometry because the case where it goes\n // below the visibility threshold as a result of clipping is rare, so we avoid doing unnecessary work\n slice.area = area;\n slice.dist = dist;\n if (outer !== undefined) { slice.outer = outer; }\n\n slices.push(slice);\n }\n return [];\n}\n\nvar clip$2 = clip_1;\n\nvar wrap_1 = wrap$1;\n\nfunction wrap$1(features, buffer, intersectX) {\n var merged = features,\n left = clip$2(features, 1, -1 - buffer, buffer, 0, intersectX, -1, 2), // left world copy\n right = clip$2(features, 1, 1 - buffer, 2 + buffer, 0, intersectX, -1, 2); // right world copy\n\n if (left || right) {\n merged = clip$2(features, 1, -buffer, 1 + buffer, 0, intersectX, -1, 2); // center world copy\n\n if (left) { merged = shiftFeatureCoords(left, 1).concat(merged); } // merge left into center\n if (right) { merged = merged.concat(shiftFeatureCoords(right, -1)); } // merge right into center\n }\n\n return merged;\n}\n\nfunction shiftFeatureCoords(features, offset) {\n var newFeatures = [];\n\n for (var i = 0; i < features.length; i++) {\n var feature = features[i],\n type = feature.type;\n\n var newGeometry;\n\n if (type === 1) {\n newGeometry = shiftCoords(feature.geometry, offset);\n } else {\n newGeometry = [];\n for (var j = 0; j < feature.geometry.length; j++) {\n newGeometry.push(shiftCoords(feature.geometry[j], offset));\n }\n }\n\n newFeatures.push({\n geometry: newGeometry,\n type: type,\n tags: feature.tags,\n min: [feature.min[0] + offset, feature.min[1]],\n max: [feature.max[0] + offset, feature.max[1]]\n });\n }\n\n return newFeatures;\n}\n\nfunction shiftCoords(points, offset) {\n var newPoints = [];\n newPoints.area = points.area;\n newPoints.dist = points.dist;\n\n for (var i = 0; i < points.length; i++) {\n newPoints.push([points[i][0] + offset, points[i][1], points[i][2]]);\n }\n return newPoints;\n}\n\nvar tile$1 = createTile$1;\n\nfunction createTile$1(features, z2, tx, ty, tolerance, noSimplify) {\n var tile = {\n features: [],\n numPoints: 0,\n numSimplified: 0,\n numFeatures: 0,\n source: null,\n x: tx,\n y: ty,\n z2: z2,\n transformed: false,\n min: [2, 1],\n max: [-1, 0]\n };\n for (var i = 0; i < features.length; i++) {\n tile.numFeatures++;\n addFeature(tile, features[i], tolerance, noSimplify);\n\n var min = features[i].min,\n max = features[i].max;\n\n if (min[0] < tile.min[0]) { tile.min[0] = min[0]; }\n if (min[1] < tile.min[1]) { tile.min[1] = min[1]; }\n if (max[0] > tile.max[0]) { tile.max[0] = max[0]; }\n if (max[1] > tile.max[1]) { tile.max[1] = max[1]; }\n }\n return tile;\n}\n\nfunction addFeature(tile, feature, tolerance, noSimplify) {\n\n var geom = feature.geometry,\n type = feature.type,\n simplified = [],\n sqTolerance = tolerance * tolerance,\n i, j, ring, p;\n\n if (type === 1) {\n for (i = 0; i < geom.length; i++) {\n simplified.push(geom[i]);\n tile.numPoints++;\n tile.numSimplified++;\n }\n\n } else {\n\n // simplify and transform projected coordinates for tile geometry\n for (i = 0; i < geom.length; i++) {\n ring = geom[i];\n\n // filter out tiny polylines & polygons\n if (!noSimplify && ((type === 2 && ring.dist < tolerance) ||\n (type === 3 && ring.area < sqTolerance))) {\n tile.numPoints += ring.length;\n continue;\n }\n\n var simplifiedRing = [];\n\n for (j = 0; j < ring.length; j++) {\n p = ring[j];\n // keep points with importance > tolerance\n if (noSimplify || p[2] > sqTolerance) {\n simplifiedRing.push(p);\n tile.numSimplified++;\n }\n tile.numPoints++;\n }\n\n if (type === 3) { rewind(simplifiedRing, ring.outer); }\n\n simplified.push(simplifiedRing);\n }\n }\n\n if (simplified.length) {\n tile.features.push({\n geometry: simplified,\n type: type,\n tags: feature.tags || null\n });\n }\n}\n\nfunction rewind(ring, clockwise) {\n var area = signedArea(ring);\n if (area < 0 === clockwise) { ring.reverse(); }\n}\n\nfunction signedArea(ring) {\n var sum = 0;\n for (var i = 0, len = ring.length, j = len - 1, p1, p2; i < len; j = i++) {\n p1 = ring[i];\n p2 = ring[j];\n sum += (p2[0] - p1[0]) * (p1[1] + p2[1]);\n }\n return sum;\n}\n\nvar index = geojsonvt;\n\nvar convert = convert_1;\nvar transform = transform$1;\nvar clip = clip_1;\nvar wrap = wrap_1;\nvar createTile = tile$1; // final simplified tile generation\n\n\nfunction geojsonvt(data, options) {\n return new GeoJSONVT(data, options);\n}\n\nfunction GeoJSONVT(data, options) {\n options = this.options = extend(Object.create(this.options), options);\n\n var debug = options.debug;\n\n if (debug) { console.time('preprocess data'); }\n\n var z2 = 1 << options.maxZoom, // 2^z\n features = convert(data, options.tolerance / (z2 * options.extent));\n\n this.tiles = {};\n this.tileCoords = [];\n\n if (debug) {\n console.timeEnd('preprocess data');\n console.log('index: maxZoom: %d, maxPoints: %d', options.indexMaxZoom, options.indexMaxPoints);\n console.time('generate tiles');\n this.stats = {};\n this.total = 0;\n }\n\n features = wrap(features, options.buffer / options.extent, intersectX);\n\n // start slicing from the top tile down\n if (features.length) { this.splitTile(features, 0, 0, 0); }\n\n if (debug) {\n if (features.length) { console.log('features: %d, points: %d', this.tiles[0].numFeatures, this.tiles[0].numPoints); }\n console.timeEnd('generate tiles');\n console.log('tiles generated:', this.total, JSON.stringify(this.stats));\n }\n}\n\nGeoJSONVT.prototype.options = {\n maxZoom: 14, // max zoom to preserve detail on\n indexMaxZoom: 5, // max zoom in the tile index\n indexMaxPoints: 100000, // max number of points per tile in the tile index\n solidChildren: false, // whether to tile solid square tiles further\n tolerance: 3, // simplification tolerance (higher means simpler)\n extent: 4096, // tile extent\n buffer: 64, // tile buffer on each side\n debug: 0 // logging level (0, 1 or 2)\n};\n\nGeoJSONVT.prototype.splitTile = function (features, z, x, y, cz, cx, cy) {\n var this$1 = this;\n\n\n var stack = [features, z, x, y],\n options = this.options,\n debug = options.debug,\n solid = null;\n\n // avoid recursion by using a processing queue\n while (stack.length) {\n y = stack.pop();\n x = stack.pop();\n z = stack.pop();\n features = stack.pop();\n\n var z2 = 1 << z,\n id = toID(z, x, y),\n tile = this$1.tiles[id],\n tileTolerance = z === options.maxZoom ? 0 : options.tolerance / (z2 * options.extent);\n\n if (!tile) {\n if (debug > 1) { console.time('creation'); }\n\n tile = this$1.tiles[id] = createTile(features, z2, x, y, tileTolerance, z === options.maxZoom);\n this$1.tileCoords.push({z: z, x: x, y: y});\n\n if (debug) {\n if (debug > 1) {\n console.log('tile z%d-%d-%d (features: %d, points: %d, simplified: %d)',\n z, x, y, tile.numFeatures, tile.numPoints, tile.numSimplified);\n console.timeEnd('creation');\n }\n var key = 'z' + z;\n this$1.stats[key] = (this$1.stats[key] || 0) + 1;\n this$1.total++;\n }\n }\n\n // save reference to original geometry in tile so that we can drill down later if we stop now\n tile.source = features;\n\n // if it's the first-pass tiling\n if (!cz) {\n // stop tiling if we reached max zoom, or if the tile is too simple\n if (z === options.indexMaxZoom || tile.numPoints <= options.indexMaxPoints) { continue; }\n\n // if a drilldown to a specific tile\n } else {\n // stop tiling if we reached base zoom or our target tile zoom\n if (z === options.maxZoom || z === cz) { continue; }\n\n // stop tiling if it's not an ancestor of the target tile\n var m = 1 << (cz - z);\n if (x !== Math.floor(cx / m) || y !== Math.floor(cy / m)) { continue; }\n }\n\n // stop tiling if the tile is solid clipped square\n if (!options.solidChildren && isClippedSquare(tile, options.extent, options.buffer)) {\n if (cz) { solid = z; } // and remember the zoom if we're drilling down\n continue;\n }\n\n // if we slice further down, no need to keep source geometry\n tile.source = null;\n\n if (debug > 1) { console.time('clipping'); }\n\n // values we'll use for clipping\n var k1 = 0.5 * options.buffer / options.extent,\n k2 = 0.5 - k1,\n k3 = 0.5 + k1,\n k4 = 1 + k1,\n tl, bl, tr, br, left, right;\n\n tl = bl = tr = br = null;\n\n left = clip(features, z2, x - k1, x + k3, 0, intersectX, tile.min[0], tile.max[0]);\n right = clip(features, z2, x + k2, x + k4, 0, intersectX, tile.min[0], tile.max[0]);\n\n if (left) {\n tl = clip(left, z2, y - k1, y + k3, 1, intersectY, tile.min[1], tile.max[1]);\n bl = clip(left, z2, y + k2, y + k4, 1, intersectY, tile.min[1], tile.max[1]);\n }\n\n if (right) {\n tr = clip(right, z2, y - k1, y + k3, 1, intersectY, tile.min[1], tile.max[1]);\n br = clip(right, z2, y + k2, y + k4, 1, intersectY, tile.min[1], tile.max[1]);\n }\n\n if (debug > 1) { console.timeEnd('clipping'); }\n\n if (tl) { stack.push(tl, z + 1, x * 2, y * 2); }\n if (bl) { stack.push(bl, z + 1, x * 2, y * 2 + 1); }\n if (tr) { stack.push(tr, z + 1, x * 2 + 1, y * 2); }\n if (br) { stack.push(br, z + 1, x * 2 + 1, y * 2 + 1); }\n }\n\n return solid;\n};\n\nGeoJSONVT.prototype.getTile = function (z, x, y) {\n var this$1 = this;\n\n var options = this.options,\n extent = options.extent,\n debug = options.debug;\n\n var z2 = 1 << z;\n x = ((x % z2) + z2) % z2; // wrap tile x coordinate\n\n var id = toID(z, x, y);\n if (this.tiles[id]) { return transform.tile(this.tiles[id], extent); }\n\n if (debug > 1) { console.log('drilling down to z%d-%d-%d', z, x, y); }\n\n var z0 = z,\n x0 = x,\n y0 = y,\n parent;\n\n while (!parent && z0 > 0) {\n z0--;\n x0 = Math.floor(x0 / 2);\n y0 = Math.floor(y0 / 2);\n parent = this$1.tiles[toID(z0, x0, y0)];\n }\n\n if (!parent || !parent.source) { return null; }\n\n // if we found a parent tile containing the original geometry, we can drill down from it\n if (debug > 1) { console.log('found parent tile z%d-%d-%d', z0, x0, y0); }\n\n // it parent tile is a solid clipped square, return it instead since it's identical\n if (isClippedSquare(parent, extent, options.buffer)) { return transform.tile(parent, extent); }\n\n if (debug > 1) { console.time('drilling down'); }\n var solid = this.splitTile(parent.source, z0, x0, y0, z, x, y);\n if (debug > 1) { console.timeEnd('drilling down'); }\n\n // one of the parent tiles was a solid clipped square\n if (solid !== null) {\n var m = 1 << (z - solid);\n id = toID(solid, Math.floor(x / m), Math.floor(y / m));\n }\n\n return this.tiles[id] ? transform.tile(this.tiles[id], extent) : null;\n};\n\nfunction toID(z, x, y) {\n return (((1 << z) * y + x) * 32) + z;\n}\n\nfunction intersectX(a, b, x) {\n return [x, (x - a[0]) * (b[1] - a[1]) / (b[0] - a[0]) + a[1], 1];\n}\nfunction intersectY(a, b, y) {\n return [(y - a[1]) * (b[0] - a[0]) / (b[1] - a[1]) + a[0], y, 1];\n}\n\nfunction extend(dest, src) {\n for (var i in src) { dest[i] = src[i]; }\n return dest;\n}\n\n// checks whether a tile is a whole-area fill after clipping; if it is, there's no sense slicing it further\nfunction isClippedSquare(tile, extent, buffer) {\n\n var features = tile.source;\n if (features.length !== 1) { return false; }\n\n var feature = features[0];\n if (feature.type !== 3 || feature.geometry.length > 1) { return false; }\n\n var len = feature.geometry[0].length;\n if (len !== 5) { return false; }\n\n for (var i = 0; i < len; i++) {\n var p = transform.point(feature.geometry[0][i], extent, tile.z2, tile.x, tile.y);\n if ((p[0] !== -buffer && p[0] !== extent + buffer) ||\n (p[1] !== -buffer && p[1] !== extent + buffer)) { return false; }\n }\n\n return true;\n}\n\nvar identity = function(x) {\n return x;\n};\n\nvar transform$3 = function(topology) {\n if ((transform = topology.transform) == null) { return identity; }\n var transform,\n x0,\n y0,\n kx = transform.scale[0],\n ky = transform.scale[1],\n dx = transform.translate[0],\n dy = transform.translate[1];\n return function(point, i) {\n if (!i) { x0 = y0 = 0; }\n point[0] = (x0 += point[0]) * kx + dx;\n point[1] = (y0 += point[1]) * ky + dy;\n return point;\n };\n};\n\nvar bbox = function(topology) {\n var bbox = topology.bbox;\n\n function bboxPoint(p0) {\n p1[0] = p0[0], p1[1] = p0[1], t(p1);\n if (p1[0] < x0) { x0 = p1[0]; }\n if (p1[0] > x1) { x1 = p1[0]; }\n if (p1[1] < y0) { y0 = p1[1]; }\n if (p1[1] > y1) { y1 = p1[1]; }\n }\n\n function bboxGeometry(o) {\n switch (o.type) {\n case \"GeometryCollection\": o.geometries.forEach(bboxGeometry); break;\n case \"Point\": bboxPoint(o.coordinates); break;\n case \"MultiPoint\": o.coordinates.forEach(bboxPoint); break;\n }\n }\n\n if (!bbox) {\n var t = transform$3(topology), p0, p1 = new Array(2), name,\n x0 = Infinity, y0 = x0, x1 = -x0, y1 = -x0;\n\n topology.arcs.forEach(function(arc) {\n var i = -1, n = arc.length;\n while (++i < n) {\n p0 = arc[i], p1[0] = p0[0], p1[1] = p0[1], t(p1, i);\n if (p1[0] < x0) { x0 = p1[0]; }\n if (p1[0] > x1) { x1 = p1[0]; }\n if (p1[1] < y0) { y0 = p1[1]; }\n if (p1[1] > y1) { y1 = p1[1]; }\n }\n });\n\n for (name in topology.objects) {\n bboxGeometry(topology.objects[name]);\n }\n\n bbox = topology.bbox = [x0, y0, x1, y1];\n }\n\n return bbox;\n};\n\nvar reverse = function(array, n) {\n var t, j = array.length, i = j - n;\n while (i < --j) { t = array[i], array[i++] = array[j], array[j] = t; }\n};\n\nvar feature = function(topology, o) {\n return o.type === \"GeometryCollection\"\n ? {type: \"FeatureCollection\", features: o.geometries.map(function(o) { return feature$1(topology, o); })}\n : feature$1(topology, o);\n};\n\nfunction feature$1(topology, o) {\n var id = o.id,\n bbox = o.bbox,\n properties = o.properties == null ? {} : o.properties,\n geometry = object(topology, o);\n return id == null && bbox == null ? {type: \"Feature\", properties: properties, geometry: geometry}\n : bbox == null ? {type: \"Feature\", id: id, properties: properties, geometry: geometry}\n : {type: \"Feature\", id: id, bbox: bbox, properties: properties, geometry: geometry};\n}\n\nfunction object(topology, o) {\n var transformPoint = transform$3(topology),\n arcs = topology.arcs;\n\n function arc(i, points) {\n if (points.length) { points.pop(); }\n for (var a = arcs[i < 0 ? ~i : i], k = 0, n = a.length; k < n; ++k) {\n points.push(transformPoint(a[k].slice(), k));\n }\n if (i < 0) { reverse(points, n); }\n }\n\n function point(p) {\n return transformPoint(p.slice());\n }\n\n function line(arcs) {\n var points = [];\n for (var i = 0, n = arcs.length; i < n; ++i) { arc(arcs[i], points); }\n if (points.length < 2) { points.push(points[0].slice()); }\n return points;\n }\n\n function ring(arcs) {\n var points = line(arcs);\n while (points.length < 4) { points.push(points[0].slice()); }\n return points;\n }\n\n function polygon(arcs) {\n return arcs.map(ring);\n }\n\n function geometry(o) {\n var type = o.type, coordinates;\n switch (type) {\n case \"GeometryCollection\": return {type: type, geometries: o.geometries.map(geometry)};\n case \"Point\": coordinates = point(o.coordinates); break;\n case \"MultiPoint\": coordinates = o.coordinates.map(point); break;\n case \"LineString\": coordinates = line(o.arcs); break;\n case \"MultiLineString\": coordinates = o.arcs.map(line); break;\n case \"Polygon\": coordinates = polygon(o.arcs); break;\n case \"MultiPolygon\": coordinates = o.arcs.map(polygon); break;\n default: return null;\n }\n return {type: type, coordinates: coordinates};\n }\n\n return geometry(o);\n}\n\nvar stitch = function(topology, arcs) {\n var stitchedArcs = {},\n fragmentByStart = {},\n fragmentByEnd = {},\n fragments = [],\n emptyIndex = -1;\n\n // Stitch empty arcs first, since they may be subsumed by other arcs.\n arcs.forEach(function(i, j) {\n var arc = topology.arcs[i < 0 ? ~i : i], t;\n if (arc.length < 3 && !arc[1][0] && !arc[1][1]) {\n t = arcs[++emptyIndex], arcs[emptyIndex] = i, arcs[j] = t;\n }\n });\n\n arcs.forEach(function(i) {\n var e = ends(i),\n start = e[0],\n end = e[1],\n f, g;\n\n if (f = fragmentByEnd[start]) {\n delete fragmentByEnd[f.end];\n f.push(i);\n f.end = end;\n if (g = fragmentByStart[end]) {\n delete fragmentByStart[g.start];\n var fg = g === f ? f : f.concat(g);\n fragmentByStart[fg.start = f.start] = fragmentByEnd[fg.end = g.end] = fg;\n } else {\n fragmentByStart[f.start] = fragmentByEnd[f.end] = f;\n }\n } else if (f = fragmentByStart[end]) {\n delete fragmentByStart[f.start];\n f.unshift(i);\n f.start = start;\n if (g = fragmentByEnd[start]) {\n delete fragmentByEnd[g.end];\n var gf = g === f ? f : g.concat(f);\n fragmentByStart[gf.start = g.start] = fragmentByEnd[gf.end = f.end] = gf;\n } else {\n fragmentByStart[f.start] = fragmentByEnd[f.end] = f;\n }\n } else {\n f = [i];\n fragmentByStart[f.start = start] = fragmentByEnd[f.end = end] = f;\n }\n });\n\n function ends(i) {\n var arc = topology.arcs[i < 0 ? ~i : i], p0 = arc[0], p1;\n if (topology.transform) { p1 = [0, 0], arc.forEach(function(dp) { p1[0] += dp[0], p1[1] += dp[1]; }); }\n else { p1 = arc[arc.length - 1]; }\n return i < 0 ? [p1, p0] : [p0, p1];\n }\n\n function flush(fragmentByEnd, fragmentByStart) {\n for (var k in fragmentByEnd) {\n var f = fragmentByEnd[k];\n delete fragmentByStart[f.start];\n delete f.start;\n delete f.end;\n f.forEach(function(i) { stitchedArcs[i < 0 ? ~i : i] = 1; });\n fragments.push(f);\n }\n }\n\n flush(fragmentByEnd, fragmentByStart);\n flush(fragmentByStart, fragmentByEnd);\n arcs.forEach(function(i) { if (!stitchedArcs[i < 0 ? ~i : i]) { fragments.push([i]); } });\n\n return fragments;\n};\n\nfunction extractArcs(topology, object$$1, filter) {\n var arcs = [],\n geomsByArc = [],\n geom;\n\n function extract0(i) {\n var j = i < 0 ? ~i : i;\n (geomsByArc[j] || (geomsByArc[j] = [])).push({i: i, g: geom});\n }\n\n function extract1(arcs) {\n arcs.forEach(extract0);\n }\n\n function extract2(arcs) {\n arcs.forEach(extract1);\n }\n\n function extract3(arcs) {\n arcs.forEach(extract2);\n }\n\n function geometry(o) {\n switch (geom = o, o.type) {\n case \"GeometryCollection\": o.geometries.forEach(geometry); break;\n case \"LineString\": extract1(o.arcs); break;\n case \"MultiLineString\": case \"Polygon\": extract2(o.arcs); break;\n case \"MultiPolygon\": extract3(o.arcs); break;\n }\n }\n\n geometry(object$$1);\n\n geomsByArc.forEach(filter == null\n ? function(geoms) { arcs.push(geoms[0].i); }\n : function(geoms) { if (filter(geoms[0].g, geoms[geoms.length - 1].g)) { arcs.push(geoms[0].i); } });\n\n return arcs;\n}\n\nfunction planarRingArea(ring) {\n var i = -1, n = ring.length, a, b = ring[n - 1], area = 0;\n while (++i < n) { a = b, b = ring[i], area += a[0] * b[1] - a[1] * b[0]; }\n return Math.abs(area); // Note: doubled area!\n}\n\nvar bisect = function(a, x) {\n var lo = 0, hi = a.length;\n while (lo < hi) {\n var mid = lo + hi >>> 1;\n if (a[mid] < x) { lo = mid + 1; }\n else { hi = mid; }\n }\n return lo;\n};\n\nvar slicers = {};\nvar options;\n\nonmessage = function (e) {\n if (e.data[0] === 'slice') {\n // Given a blob of GeoJSON and some topojson/geojson-vt options, do the slicing.\n var geojson = e.data[1];\n options = e.data[2];\n\n if (geojson.type && geojson.type === 'Topology') {\n for (var layerName in geojson.objects) {\n slicers[layerName] = index(\n feature(geojson, geojson.objects[layerName])\n , options);\n }\n } else {\n slicers[options.vectorTileLayerName] = index(geojson, options);\n }\n\n } else if (e.data[0] === 'get') {\n // Gets the vector tile for the given coordinates, sends it back as a message\n var coords = e.data[1];\n\n var tileLayers = {};\n for (var layerName in slicers) {\n var slicedTileLayer = slicers[layerName].getTile(coords.z, coords.x, coords.y);\n\n if (slicedTileLayer) {\n var vectorTileLayer = {\n features: [],\n extent: options.extent,\n name: options.vectorTileLayerName,\n length: slicedTileLayer.features.length\n };\n\n for (var i in slicedTileLayer.features) {\n var feat = {\n geometry: slicedTileLayer.features[i].geometry,\n properties: slicedTileLayer.features[i].tags,\n type: slicedTileLayer.features[i].type // 1 = point, 2 = line, 3 = polygon\n };\n vectorTileLayer.features.push(feat);\n }\n tileLayers[layerName] = vectorTileLayer;\n }\n }\n postMessage({ layers: tileLayers, coords: coords });\n }\n};\n//# sourceMap" + "pingURL=slicerWebWorker.js.worker.map\n", "text/plain; charset=us-ascii", false);
// The geojson/topojson is sliced into tiles via a web worker.
// This import statement depends on rollup-file-as-blob, so that the
// variable 'workerCode' is a blob URL.
/*
* 🍂class VectorGrid.Slicer
* 🍂extends VectorGrid
*
* A `VectorGrid` for slicing up big GeoJSON or TopoJSON documents in vector
* tiles, leveraging [`geojson-vt`](https://github.com/mapbox/geojson-vt).
*
* 🍂example
*
* ```
* var geoJsonDocument = {
* type: 'FeatureCollection',
* features: [ ... ]
* };
*
* L.vectorGrid.slicer(geoJsonDocument, {
* vectorTileLayerStyles: {
* sliced: { ... }
* }
* }).addTo(map);
*
* ```
*
* `VectorGrid.Slicer` can also handle [TopoJSON](https://github.com/mbostock/topojson) transparently:
* ```js
* var layer = L.vectorGrid.slicer(topojson, options);
* ```
*
* The TopoJSON format [implicitly groups features into "objects"](https://github.com/mbostock/topojson-specification/blob/master/README.md#215-objects).
* These will be transformed into vector tile layer names when styling (the
* `vectorTileLayerName` option is ignored when using TopoJSON).
*
*/
L.VectorGrid.Slicer = L.VectorGrid.extend({
options: {
// 🍂section
// Additionally to these options, `VectorGrid.Slicer` can take in any
// of the [`geojson-vt` options](https://github.com/mapbox/geojson-vt#options).
// 🍂option vectorTileLayerName: String = 'sliced'
// Vector tiles contain a set of *data layers*, and those data layers
// contain features. Thus, the slicer creates one data layer, with
// the name given in this option. This is important for symbolizing the data.
vectorTileLayerName: 'sliced',
extent: 4096, // Default for geojson-vt
maxZoom: 14 // Default for geojson-vt
},
initialize: function(geojson, options) {
L.VectorGrid.prototype.initialize.call(this, options);
// Create a shallow copy of this.options, excluding things that might
// be functions - we only care about topojson/geojsonvt options
var options = {};
for (var i in this.options) {
if (i !== 'rendererFactory' &&
i !== 'vectorTileLayerStyles' &&
typeof (this.options[i]) !== 'function'
) {
options[i] = this.options[i];
}
}
// this._worker = new Worker(window.URL.createObjectURL(new Blob([workerCode])));
this._worker = new Worker(workerCode);
// Send initial data to worker.
this._worker.postMessage(['slice', geojson, options]);
},
_getVectorTilePromise: function(coords) {
var _this = this;
var p = new Promise( function waitForWorker(res) {
_this._worker.addEventListener('message', function recv(m) {
if (m.data.coords &&
m.data.coords.x === coords.x &&
m.data.coords.y === coords.y &&
m.data.coords.z === coords.z ) {
res(m.data);
_this._worker.removeEventListener('message', recv);
}
});
});
this._worker.postMessage(['get', coords]);
return p;
},
});
L.vectorGrid.slicer = function (geojson, options) {
return new L.VectorGrid.Slicer(geojson, options);
};
L.Canvas.Tile = L.Canvas.extend({
initialize: function (tileCoord, tileSize, options) {
L.Canvas.prototype.initialize.call(this, options);
this._tileCoord = tileCoord;
this._size = tileSize;
this._initContainer();
this._container.setAttribute('width', this._size.x);
this._container.setAttribute('height', this._size.y);
this._layers = {};
this._drawnLayers = {};
this._drawing = true;
if (options.interactive) {
// By default, Leaflet tiles do not have pointer events
this._container.style.pointerEvents = 'auto';
}
},
getCoord: function() {
return this._tileCoord;
},
getContainer: function() {
return this._container;
},
getOffset: function() {
return this._tileCoord.scaleBy(this._size).subtract(this._map.getPixelOrigin());
},
onAdd: L.Util.falseFn,
addTo: function(map) {
this._map = map;
},
removeFrom: function (map) {
delete this._map;
},
_onClick: function (e) {
var point = this._map.mouseEventToLayerPoint(e).subtract(this.getOffset()), layer, clickedLayer;
for (var id in this._layers) {
layer = this._layers[id];
if (layer.options.interactive && layer._containsPoint(point) && !this._map._draggableMoved(layer)) {
clickedLayer = layer;
}
}
if (clickedLayer) {
L.DomEvent.fakeStop(e);
this._fireEvent([clickedLayer], e);
}
},
_onMouseMove: function (e) {
if (!this._map || this._map.dragging.moving() || this._map._animatingZoom) { return; }
var point = this._map.mouseEventToLayerPoint(e).subtract(this.getOffset());
this._handleMouseHover(e, point);
},
/// TODO: Modify _initPath to include an extra parameter, a group name
/// to order symbolizers by z-index
_updateIcon: function (layer) {
if (!this._drawing) { return; }
var icon = layer.options.icon,
options = icon.options,
size = L.point(options.iconSize),
anchor = options.iconAnchor ||
size && size.divideBy(2, true),
p = layer._point.subtract(anchor),
ctx = this._ctx,
img = layer._getImage();
if (img.complete) {
ctx.drawImage(img, p.x, p.y, size.x, size.y);
} else {
L.DomEvent.on(img, 'load', function() {
ctx.drawImage(img, p.x, p.y, size.x, size.y);
});
}
this._drawnLayers[layer._leaflet_id] = layer;
}
});
L.canvas.tile = function(tileCoord, tileSize, opts){
return new L.Canvas.Tile(tileCoord, tileSize, opts);
};
// Aux file to bundle everything together
//# sourceMappingURL=Leaflet.VectorGrid.js.map
|