
Introduction
What follows is a description of an “Internet of Things” inspired, do-it-yourself,
background radiation monitor. The implementation below places a high priority on
“open source” software and hardware. Avoiding proprietary, closed source software
and cloud services allows for much greater flexibility. This flexibility facilitates ease of
deployment and scale-out on a large variety of open source platforms, and a large
variety of end user applications.

Prerequisites for building and deploying the DIY radiation monitor include: soldering,
ability to follow electrical hookup guides, knowledge of Arduino technology, Linux
system administration, and some knowledge of the C and Python computer languages.
The open source software provided should be sufficient for most applications with only
minor modifications. The server side software has been designed around the file
structure and system configuration found in most common Linux distributions. In most
cases, the majority of modification will be in the HTML, customizing the look and
appearance of the web page presentation to the end user.

Radiation Monitor System Overview
Referring to figure 1, the DIY radiation monitor consists of three major components.
They are the radiation monitor, the network connecting the radiation monitor to the
server, and the server. The network connecting the radiation monitor to the server,
including wireless access points, switches, routers, etc., will be considered background
infrastructure beyond the scope of this project description.

The radiation monitor, itself, consists of several hardware components, as well as a
software component running on the Arduino micro-controller. The server hardware can
be anything from a full up Linux server to a Raspberry Pi. The server software consists
of two components: an agent for processing data from the radiation monitor and HTML
documents for displaying the data in a web page.

DIY Radiation Monitor - Project Description

Page 1 of 10

Network
Radiation
Monitor

Figure 1. Overall conceptual view showing radiation monitor,
network, and server components.

Server

• HTTP Service
• Agent
• Database

The server agent periodically sends an HTTP request to the radiation monitor. The
monitor replies with a text sting containing the current radiation data. The agent parses
this string, converts and reformats the data, updates a database, and generates
graphical charts of the data. The agents sends the reformatted data to the HTTP server
by writing to an output file, which Java script, embedded in the HTML documents, can
read and display in web pages.

Component Descriptions
Radiation Monitor Hardware
Referring to figure 2, the radiation monitor consists essentially of only two components:
an Arduino Uno with attached Ethernet shield and a Mighty Ohm Geiger counter. Both
components are mounted in the same box. The project repository contains a
photograph of the components mounted in a simple, plastic box. (See the file
RadiationMonitor.jpg.)

Radiation Monitor Software
The software for the radiation monitor micro-controller consists of an Arduino “sketch”,
along with an ancillary library that must be included at compile time. Referring to figure
3, the main module, or sketch, may be viewed as a “stack” comprising three layers. The
top most layer includes the setup routine that runs once at boot up time, and the main
loop that contains all the routines that run forever after initial setup. Initial setup runs
routines that initialized the Ethernet interface and synchronize the system clock with a
network time server.

The main loop runs the second layer routines, referred to in figure 3 as “Listen for Serial
Port Command”, “Listen for Internet Client”, “Process Geiger Counter Data”, and
“Synchronize System Clock”. In turn Listen for Serial Port Command calls “Process

DIY Radiation Monitor - Project Description

Page 2 of 10

Direction of data flow

Figure 2. Block diagram of radiation monitor hardware showing
individual electronic components.

Radiation Monitor
MightyOhm
Item # 0001

Arduino Uno
Sparkfun

DEV-11021

Arduino Ethernet
Shield

Sparkfun
DEV-11229

Serial Port Command”. Listen for Internet Client calls “Transmit HTML Document”, or
“Transmit JSON String”. Synchronize System clock calls “Get Time from NTP Server”.
Listen for Serial Port Command intercepts keyboard characters received by way of the
Uno’s USB serial port. In a terminal session connected to the USB serial port, typing a
“c” causes the radiation monitor to switch to command mode by calling Process Serial
Port Command. In command mode, IP address mode, network time server IP address,
and verbose mode can be changed by the command line.

Listen for Internet Client checks for HTTP client requests and triggers the appropriate
response depending on the URL sent by the client. The response may be either an
HTML document or a JSON formatted text string.

Process Geiger Counter Data processes the serial data stream from the MightOhm
Geiger counter. The MightyOhm sends out data in a CRLF delimited stream of ASCII
characters, for example, a typical line has the form

CPS, 0, CPM, 22, uSv/hr, 0.12, SLOW

Process Geiger Counter Data collects this data, byte by byte, in a character array.
When a LF character arrives the contents of the array gets copied to a temporary buffer

DIY Radiation Monitor - Project Description

Page 3 of 10

Setup &
Main Loop

Synchronize
System Clock

Transmit Data
String

Get Time from
NTP Server

Figure 3. Micro-controller software block diagram
showing high level components.

Listen for
Serial Port
Command

Listen for
Internet Client

Process
Geiger

Counter Data

Transmit
HTML

Document

Process
Serial Port
Command

for use by Listen for Internet Client when Internet clients request the radiation monitor
data.

Synchronize System Clock gets the current universal coordinated time (UTC) from Get
Time from NTP Server and sets the system clock to the UTC. When an Internet client
requests data from the radiation monitor, the current UTC gets sent to the client along
with the radiation data.

Server Software

Referring to figure 4, the server components consist essentially of two pieces: an HTTP
server component and an agent component. The HTTP server component includes
HTML documents, with embedded Java script, for displaying the radiation monitor data
in a web browser. The agent, a Python script, manages data conversion and
reformatting, updating a database, and generating graphical charts.
Events flow in the following manner. The agent periodically makes an HTTP request of
the radiation monitor. The radiation monitor responds with a single string containing the
data. Below is a typical example of a data string received from the radiation monitor.

$,UTC=0:14:39 9/26/2015,CPS=0,CPM=19,uSv/hr=0.10,Mode=SLOW,#

DIY Radiation Monitor - Project Description

Page 4 of 10

Radiation
Monitor

Client

Internet

Figure 4. Block diagram of server software components showing data i/o, agent
process, HTTP service, and database elements.

Agent

Rrdtool
Database

Output
Data
File

HTTP
Service

Server

The agent parses this string, writes the data to a rrdtool database, and writes the data to
the “Output Data File” for use by HTML documents. When a client requests a radiation
monitor HTML document, Java script embedded in the document reads the output data
file and displays this data in an HTML document. Although not shown in figure 4, the
agent, as mentioned earlier, generates graphic charts for display in HTML documents.
The graphic charts are stored as image files which Java script in the HTML documents
can display in the radiation monitor web page.

Building the Radiation Monitor
Parts List

Description Quantity Supplier Part #

MightyOhm Geiger Counter 1 MightyOhm 0001

Arduino Uno micro-controller 1 Sparkfun DEV-11021

Arduino Ethernet shield 1 Sparkfun DEV-11229

Supplier websites
• MightyOhm: mightyohm.com/blog/products/geiger-counter/
• Sparkfun: www.sparkfun.com

Some additional hardware may be required, such as, a box to contain the Arduino parts
and the MightyOhm Geiger counter. A small power supply (7 to 10 VDC) may be
necessary if the Arduino’s USB port will not be used for power.

Assembly Notes

1. Build the MightyOhm Geiger counter according to the manufacturer’s instructions,
substituting out the two resisters as directed in steps 2 and 3 below. The
MightyOhm Geiger counter uses a 3 volt battery power supply and must be modified
slightly to work with the Arduino Uno’s 5 volt power. The following modifications will
allow the Mighty Ohm Geiger counter board to operate using 5 volts supplied by the
Uno instead of 3 volts supplied by battery. (See MightyOhmSchematic.jpg in the
project docs folder.)

2. On the MightyOhm Geiger counter printed circuit board, change resistor R6 from a
330 Ohm to a 1K Ohm resistor.

3. On the MightOhm Geiger counter printed circuit board, change resistor R11 from a
100 Ohm to a 330 Ohm resistor.

4. Connect +5v from Arduino Ethernet shield to Geiger counter connector J6 pin 1.
5. Connect GND from Arduino Ethernet shield to Geiger counter connector J6 pin 3.
6. Connect Arduino pin D5 to Geiger counter connector J7 pin 5.

DIY Radiation Monitor - Project Description

Page 5 of 10

http://mightyohm.com/blog/products/geiger-counter/
http://mightyohm.com/blog/products/geiger-counter/
http://www.sparkfun.com
http://www.sparkfun.com

7. Mount the Arduino board and Geiger counter board in a suitable housing, such as a
small plastic box. The housing should not be made of any material that shields
radiation, such as lead.

This completes assembly of the radiation monitor.

Software Installation

1. Get the latest version of the Arduino IDE from https://www.arduino.cc/en/Main/
Software. The IDE is available for Mac, Windows, and Linux operation systems.

2. Before compiling the radiation monitor Arduino sketch, an Arduino time/date library
must be installed. Download the time library from http://www.pjrc.com/teensy/
td_libs_Time.html or from https://github.com/PaulStoffregen/Time. Follow instructions
on the website for installing the library. When you run the Arduino IDE for the first
time, the IDE creates a folder Arduino/sketch/libraries. Look for this folder in your
home documents folder. The Time library should be located there.

3. Using a USB cable connect the computer running the Arduino IDE to the Arduino
Uno’s USB port.

4. Follow the Arduino instructions for connecting the Uno to your computer and
configuring the IDE for the Uno. Normally this means navigating to the Tools->Board
menu item and selecting the Uno, and going to the Tools->Port menu item and
selecting USB port to which the Uno is connected.

5. From the Arduino folder in the github project folder, download the Arduino sketch
named Radmon.ino.

6. Open this sketch in the IDE.
7. Near the top of the sketch look for a line that looks similar to

#define ETHERNET_MAC_ADDRESS 0x90, 0xA2, 0xDA, 0x0D, 0x84, 0xF6

Change the hardcoded MAC address to the MAC address provided with your
Ethernet shield.

8. Compile the sketch. If the Time library was installed properly, and everything else
done correctly, the sketch should compile cleanly without errors.

9. Upload the compiled sketch to the Arduino Uno.

This completes the radiation monitor software installation. Before the radiation monitor
can be connected to your network, the Ethernet interface must be properly configured.
Follow the instructions below to set up the radiation monitor’s network interface.

Configuring the Radiation Monitor

1. The radiation monitor should already be connected to your computer from step 4 in
the section “Software Installation”. If not, then do step 4 above.

2. Close the Arduino IDE.

DIY Radiation Monitor - Project Description

Page 6 of 10

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
http://www.pjrc.com/teensy/td_libs_Time.html
http://www.pjrc.com/teensy/td_libs_Time.html
http://www.pjrc.com/teensy/td_libs_Time.html
http://www.pjrc.com/teensy/td_libs_Time.html
https://github.com/PaulStoffregen/Time
https://github.com/PaulStoffregen/Time

3. This step depends on what OS your computer is running. If you are running
Microsoft Windows, you will probably have to use Putty, or something equivalent, to
set up a terminal session with the radiation monitor. If you are running Linux or OS
X, you can use a screen session. However you will need to tell screen to which
device the radiation monitor is connected, and this will vary with the OS. Normally,
look in the /dev folder to find the usb device name. On Ubuntu systems type the
command ‘ls /dev/tty* | grep ACM’. Then open a screen session by typing ‘screen
-S rad {dev path}’, where ‘{dev path}’ is the device path determined above.

4. If you have successfully connected to the Uno, you will see a few lines of text
showing the software version number and copyright notice. You may see a synch
failed message. This is normal when the Radmon sketch is downloaded to the
Arduino for the first time.

5. Press the lower case ‘c’ character to enter command mode. A menu of command
mode options will appear. Please note that the radiation monitor will not respond to
HTTP requests while in command mode. You must exit command mode, as
described below, for the radiation monitor to respond to HTTP requests.

6. Type ‘2’ and press enter. If you want to assign the radiation monitor a static IP
address then enter it now. If you want to use a DHCP assigned address, then
simply press enter. (See your network administrator for what IP address to use.)

7. Type ‘3’ and press enter. If you want to enter a specific NTP server IP address, then
enter it now. If you want to use the default NTP server IP address, then simply press
enter.

8. Type ‘1’ and press enter. Verify that the settings are as you want them. If they are
not, the repeat steps 6 thru 8.

9. If the proposed settings are correct, type ‘6’ and press enter. At any time all changes
can be discarded and the radiation monitor returned to normal mode by typing ‘5’
and pressing enter.

This completes configuring the radiation monitor.

Installing the Server Software
Dependencies
• The server software should be installed on a recent Linux distribution such as Ubuntu.

(The author has successfully developed and installed the software on a Raspberry Pi
running the Raspbian operating system.)

• Apache2 should be installed and configured to allow serving HTML documents from
the user’s public_html folder.

• Rrdtool should be installed - type sudo apt-get install rrdtool
• Python 2.7 usually comes pre-installed in virtually all Linux distributions. Type

“python” at a command line prompt to verify Python has been installed.

Software Inventory
The software items that need to be installed on the server are

HTML folder:

DIY Radiation Monitor - Project Description

Page 7 of 10

• radmon.html
• index.html
• static/chalk.jpg

Bin folder:
• createRadmonRrd.py
• radmonAgent.py
• startwea
• stopwea

Installation
Note that the following installation procedure assumes that radmon HTML documents
will reside in the user’s public_html directory. Typically the full path name to this
directory will be something like “/home/[user_name]/public_html”.

1. Use cd to change directory to the public_html directory. In the public_html directory,
use mkdir to create a directory “radmon” to contain the radmon HTML files.

2. Change directory to the radmon directory created in step 1. In the radmon directory,
use mkdir to create a directory “dynamic” to contain dynamic content used by html
documents.

3. From the html folder found in the github radmon project folder, download all files and
folders to the directory created in step 1.

4. The input and output data files (see figure 4) get overwritten frequently; similarly the
graphic image files get overwritten frequently. On SD card systems, such as a
Raspberry Pi, it is inadvisable to do frequent writes to any file system mounted on
the SD card. To use the ram based temporary file system (tmpfs) to store these
files, continue with step 5. Otherwise, to write dynamic content to the disk drive,
continue with step 7.

5. Assure that the server /tmp directory gets mounted to the temporary file system.
This can be done by adding the following line to the /etc/fstab file

 tmpfs /tmp tmpfs nodev,nosuid,size=20M 0 0

6. The HTTP service cannot freely access files and directories outside of the
public_html document root directory. Therefore, the dynamic directory must be
bound to the temporary file system by running the following commands

 mkdir /tmp/radmon
 sudo mount --bind /tmp/radmon /home/$USER/public_html/radmon/dynamic

The above two commands may be placed in a startup shell script and run at boot up
time by launching the script with the su command from the /etc/rc.local script, e.g.,

 (su - pi -c "bin/startup.sh")&

DIY Radiation Monitor - Project Description

Page 8 of 10

7. If it does not already exist, use mkdir to create a directory named “bin” in the user
home directory. For example, the full path name should look something like “/home/
[user_name]/bin’.

8. From the bin folder in the github project directory, download the files into the bin
directory created in step 7. In most Linux installations the user’s bash profile will
automatically add the user’s bin directory to the command search path. If such is
the case, then the agent can be started up by simply typing radmonAgent.py
followed by ENTER. Note that you will need to edit radmonAgent.py, adding the url
for your radiation monitor.

9. In the user home directory use mkdir create a directory named “database”. Run the
python script createRadmonRrd.py downloaded in step 8. Running this script
creates an empty round robin database file where the agent will store radiation data
as it arrives from the radiation monitor. This script should be run once and then kept
in a secure place. Running it accidentally at some future date will result in total loss
of all previously stored data.

10. In the user home directory use mkdir to create a directory named “log”.
11.For connivence two scripts have been provided to make it easy to turn the agent on

and off. The startrad script starts up the agent and causes diagnositc output and
error messages to be written to a log file in the directory created in step 10. The
stoprad script stops the agent from running.

12. In the startrad script look for a line like the following

 MONITOR_URL=”{your monitor url}”

Replace “{your monitor url}” with the url for your radiation monitor. The monitor url
may look something like http://192.168.1.155, or look something like
http://radiationMonitor.domain.com, depending on whether your local network uses a
domain name server.

This completes installation of the server software.
References and Resources
The following sources should be consulted before building the radiation monitor:

• Arduino Uno - www.arduino.cc/en/Main/ArduinoBoardUno
• Mighty Ohm Geiger Counter - mightyohm.com/blog/products/geiger-counter/

The following tutorials are useful for more in depth understanding of programming
Arduino:

• C programming - www.gnu.org/software/gnu-c-manual/
• Arduino programming - www.arduino.cc/en/Tutorial/Foundations

The following tutorials are useful for more in depth understanding of the server software:

• Java Script - www.w3schools.com/js/default.asp

DIY Radiation Monitor - Project Description

Page 9 of 10

http://arduino.cc
http://arduino.cc
http://mightyohm.com/blog/products/geiger-counter/
http://mightyohm.com/blog/products/geiger-counter/
https://www.gnu.org/software/gnu-c-manual/
https://www.gnu.org/software/gnu-c-manual/
https://www.arduino.cc/en/Tutorial/Foundations
https://www.arduino.cc/en/Tutorial/Foundations
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp

• jQuery - www.w3schools.com/jquery/default.asp
• PHP - www.w3schools.com/php/default.asp
• HTML - www.w3schools.com/html/default.asp
• Rrdtool - oss.oetiker.ch/rrdtool/
• Python - greenteapress.com/thinkpython/thinkpython.html

DIY Radiation Monitor - Project Description

Page 10 of 10

http://www.w3schools.com/jquery/default.asp
http://www.w3schools.com/jquery/default.asp
http://www.w3schools.com/php/default.asp
http://www.w3schools.com/php/default.asp
http://www.w3schools.com/html/default.asp
http://www.w3schools.com/html/default.asp
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/
http://greenteapress.com/thinkpython/thinkpython.html
http://greenteapress.com/thinkpython/thinkpython.html

