
Arednsig - Installation

Introduction
This document provides installation and configuration instructions for the Arednsig web
application. The Arednsig web app provides a convenient way to view charts of signal
statistics for any calendar period for which data points are stored in the database. The
app uses a round-robin database (RRD) that can be configured for any depth, limited
only by file system storage capacity. The signal data can be accessed by any client
with a web browser that is on the mesh network. The instructions given in this
document apply to most Linux distributions. The author has successfully run this app
on a Raspberry Pi 3 running the Raspbian operating system.

AREDN Mesh System Overview
Figure 1 provides a conceptual overview of how the AREDN mesh provides network
connectivity between client and server systems. Each node has two network interfaces:
a wireless interface to other AREDN nodes, and a local area network interface to clients
and servers. A node routes requests from clients on its LAN, via other nodes, to
servers connected to the LAN’s of other nodes. Referring to figure 1, a possible series
of events goes as follows

Page 1 of 12

Figure 1. Overall conceptual view of client and server on AREDN
mesh network.

Aredn
Node

Client

Web Browser

Mesh
Network

Server

Web Server
Agent
Database
File Server

Aredn
Node

Aredn Node
Local Area Network

Aredn Node
Local Area Network

Arednsig - Installation

1. The client sends, over the local node’s LAN, a request for services available on a
server elsewhere on the mesh network.

2. The local node routes the request, via other nodes, to the remote node where the
server is located.

3. The remote node routes the request to the appropriate server on its own LAN.
4. The server sends, over the remote node’s LAN, the reply to the requesting client.
5. The remote node routes the reply back to the local node.
6. The local node routes, over it’s LAN, the reply back to the client.

Typically, the node’s LAN is implemented by a Virtual Local Area Network (VLAN)
capable switch, such as a Netgear GS105Ev2 switch. The node uses IEEE 802.Q
VLAN identifiers to route traffic to devices on its own LAN, as well as routing external
requests to an external network connect to a “WAN” port on the VLAN switch. An
external request can be a request to any service on a host not on the LAN or
somewhere else on the mesh network.

Server Software

Referring to figure 4, the server software consists essentially of two components: a web
server component and an agent component. The web server component includes a
PHP script along with HTML documents containing embedded Javascript. The PHP
script processes POST requests sent from the requesting client. The agent, a Python
script, requests data from the local node, manages data conversion and re-formatting,
updates a database, and generates stock charts.
Events flow in the following manner.

The agent periodically sends a request to the local node for signal data. The agent then
converts specific data items to other formats where required. Selected data items get

Page 2 of 12

Figure 2. Block diagram of server software components showing data i/o, agent process,
web service, and database elements.

AREDN
Node

Agent

Output
Data
Files

Chart
Files

Rrdtool
Database

Server

Web
Service

(apache)

AREDN Node
Local Area Network

AREDN Node Signal Data

Arednsig - Installation

written to a round-robin database for permanent storage. Besides these functions, the
agent manages generation of a stock set of charts for display in HTML documents.
After formatting the node signal data, the agent writes the data to the Output Data File
for use by HTML documents. When a client browser requests the Arednsig HTML
document, Javascript embedded in the document reads the output data file and displays
this data in an HTML document. The agent, as mentioned earlier, generates graphic
charts for display in HTML documents. The graphic charts are stored as image files
which Javascript in the HTML documents can load and display in the Arednsig web
page.

When the users requests custom charts, the browser launches a PHP script on the
server. In this case, the PHP script processes client requests for charts covering
custom, user supplied dates. First the PHP script validates the user supplied date
range against the date range of the data points stored in the RRD. The date range
request by the user must be covered by the range stored in the database. Next the
script formats and runs an rrdtool graph command with the parameters to create
charts covering the user supplied date range. Finally the created charts get
downloaded to the requesting client.

Installing the Server Software

Important notes:

1. This software is not compatible with all AREDN firmware versions currently
running on the mesh network. The software has been tested on firmware
version 3.19.3.0 running on Ubiquity and found to work in that
environment.

2. The node should be allowed to run for at least sixty minutes after a
firmware upgrade or new install. This is to allow at least sixty minutes of
data points to accumulate in the nodes signal data buffer. Running
arednsigAgent.py before that amount of time will result in a “truncated list”
error.

The Arednsig application software should be installed on a Linux host which meets the
following requirements:

• The server software should be installed on a recent Linux distribution such as
Debian, Ubuntu, or Raspbian. (The author has successfully developed and
installed the software on a Raspberry Pi running the Raspbian operating system.)

• Apache2 should be installed and configured to allow serving HTML documents
from the user’s public_html folder.

• PHP should be installed and configured to allow running user PHP scripts from
the user’s public_html folder.

• Rrdtool should be installed - type sudo apt-get install rrdtool
• Python 2.7 usually comes per-installed in virtually all Linux distributions. Type

“python” at a command line prompt to verify Python has been installed.
• See the Appendix for detailed configuration notes.

Page 3 of 12

Arednsig - Installation

Software Inventory
The following software items in the install zip file need to be installed on the server

HTML folder:
• index.html
• arednsig.php
• arednsig.html
• static/chalk.jpg

bin folder:
• createArednsigRrd.py
• arednsigAgent.py
• ardstart
• ardstop

Getting the Arednsig Software

From the github repository:

1. On a computer connected to the Internet download the zip file from

https://github.com/fractalxaos/ham/archive/master.zip

2. From the downloaded file “ham-master.zip”, extract the “arednsig” folder to the
desktop.

From the Willamette Valley AREDN mesh network:

1. On a computer connected mesh network download the zip file from

http://ka7jlo-raspi1.local.mesh/file-manager/files/KA7JLO/Apps/arednsig.zip

2. Save the zip file to the desktop or downloads folder.
3. From the downloaded file “arednsig.zip”, extract the “arednsig” folder to the

desktop.

Installation

Note that the following installation procedure assumes that the document root for the
arednsig HTML documents will be the user’s public_html folder. Typically the full path
name to this folder will be something like /home/{user}/public_html, where {user} is
the name of the user account hosting Arednsig. The following steps will assume
Arednsig is running under the pi user account. The pi account is the default account
when Raspbian is first installed on a Raspberry Pi. If Arednsig will running under
another user account, then pi should be changed to that user name.

1. If it doesn’t already exist, use mkdir to create a folder public_html in the user’s
home folder. The working folder should look like /home/pi/public_html.

Page 4 of 12

Arednsig - Installation

2. In the public_html folder, use mkdir to create a folder arednsig to contain the
arednsig HTML and PHP files.

3. From the html folder in the downloaded arednsig.zip file, move all files and
folders to the folder created in step 2.

4. The output data files (see figure 2) get overwritten frequently; similarly the chart
files get overwritten frequently. On SD card systems, such as a Raspberry Pi, it
is inadvisable to do frequent writes to any file system mounted on the SD card.
To use the RAM based temporary file system (tmpfs) to store these files,
continue with step 5. Otherwise, to write dynamic content to the disk drive,
continue with step 13.

5. Assure that the server /tmp folder gets mounted to the temporary file system.
This can be done by adding the following line to the /etc/fstab file

 tmpfs /tmp tmpfs nodev,nosuid,size=50M 0 0

Reboot to make the above changes take effect.

6. Create a folder in the temporary file system for Arednsig dynamic content, and
modify the folder’s ownership and permissions to allow the Apache www-data
user to have access.

 mkdir /tmp/arednsig
 chmod g+w /tmp/arednsig
 sudo chown :www-data /tmp/arednsig

7. There are two ways to proceed at this point. Mount a bound folder for dynamic
content, or create a symbolic link to the folder created in step 6. If you choose to
create a symbolic link continue with step 11. Otherwise, continue with step 8.

8. In the arednsig folder created in step 2, use mkdir to create a folder named
dynamic.

9. Run the following command to bind the dynamic folder to the /tmp/arednsig
folder created in step 6.

 sudo mount --bind /tmp/arednsig /home/pi/public_html/arednsig/dynamic

10.The above four commands may be placed in a startup shell script and run at boot
up time by launching the startup script with the su command from /etc/rc.local.
For example, place the above commands in a script /home/pi/bin/startup.sh
and place the following line in the /etc/rc.local.

 (su - pi -c "~/bin/startup.sh")&

Whenever the host boots up, the startup.sh script will run the commands in
steps 6 and 9. Be sure that you grant startup.sh execute permissions by
running

Page 5 of 12

Arednsig - Installation

 chmod u+x ~/bin/startup.sh

Now go to step 13.

11. Alternatively create a symbolic link to /tmp/arednsig in the temporary file
system by running

 ln -s /tmp/ardnsig dynamic

12. The web service cannot freely access files and folders outside of the public_html
document root folder. To enable Apache to follow symbolic links to the
/tmp/arednsig folder, back up and then modify the file
/lib/systemd/system/apache2.service .
Below the line #PrivateTmp=true insert the line PrivateTmp=false. Note that it
is a good idea to use comments to indicate where and why a change has been
made to a configuration file. For example,

 # changed 2020-01-15 by JLO [my initials] to enable apache to follow
 # symlinks to the /tmp folder in tmpfs
 #PrivateTmp=true
 PrivateTmp=false

Reload system deamons by running

 sudo systemctl daemon-reload

Restart Apache by running

 sudo systemctl restart apache2

13. If it does not already exist, use mkdir to create a folder named bin in the user
home folder. For example, the full path name should look like /home/pi/bin.

14.From the bin folder in the downloaded arednsig.zip folder, move all files to the
folder created in step 13. In most Linux installations the user’s bash profile will
automatically add the user’s bin folder to the command search path. If such is
the case, then the agent can be started up by simply typing arednsigAgent.py
followed by ENTER. For example, typing arednsigAgent.py -v will launch the
agent in verbose debug mode.

15. In the user home folder, create a folder named database. The full path to this
folder should look like /home/pi/database. In the bin folder run the python script
createArednsigRrd.py. Running this script creates an empty round robin
database file where the agent will periodically store signal data from the AREDN
local node.. This script should be run once and then kept in a secure place.
Running it accidentally at some future date will result in total loss of all previously
stored data.

Page 6 of 12

Arednsig - Installation

16. In the user’s home folder create a folder named log. This is where the agent will
keep its error logs.

17.For convenience two scripts have been provided to make it easy to turn the
agent on and off. The ardstart script starts up the agent and causes all
diagnostic output and error messages to be written to a log file in the log folder.
The ardstop stops the agent from running. Start the arednsig agent by running
ardstart. Alternatively the ardstart command can be placed in the startup.sh
script mentioned in step 10 to automatically start the agent when the host boots
up.

This completes installation of the server software.

References and Resources

The following resources describe how to configure a Raspberry Pi to be a server

• Using an SSH key pair:
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-
key-and-adding-it-to-the-ssh-agent

• Reducing wear on the SD card:
https://www.zdnet.com/article/raspberry-pi-extending-the-life-of-the-sd-card/

• Installing a web server:
https://www.raspberrypi.org/documentation/remote-access/web-server/
apache.md

• Linux system administration and devops
https://www.guru99.com/unix-linux-tutorial.html

The following tutorials are useful for more in depth understanding of the server software:

• Javascript http://www.w3schools.com/js/default.asp
• PHP http://www.w3schools.com/php/default.asp
• HTML http://www.w3schools.com/html/default.asp
• Rrdtool http://oss.oetiker.ch/rrdtool/
• Python http://greenteapress.com/thinkpython/thinkpython.html

Appendix

The following steps describe how to build a web server on a Raspberry Pi. The steps
below configure the Raspberry Pi to serve web pages from the user’s document root
folder. When user html folders are enabled, Apache looks for the files in the user’s
public_html folder. For example, a browser request
http://raspi.local/~pi/myDocument.html would cause the host raspi.local to look for
myDocument.html in the folder /home/pi/public_html. With this setup documents
can also be served from the host’s /var/www folder. For example,
http://raspi.local/aDocument.html would cause Apache to look for aDocument.html
in the folder /var/www/html.

Page 7 of 12

https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
http://greenteapress.com/thinkpython/thinkpython.html
http://oss.oetiker.ch/rrdtool/
http://www.w3schools.com/html/default.asp
http://www.w3schools.com/php/default.asp
http://www.w3schools.com/js/default.asp
https://www.guru99.com/unix-linux-tutorial.html
https://www.zdnet.com/article/raspberry-pi-extending-the-life-of-the-sd-card/
https://www.zdnet.com/article/raspberry-pi-extending-the-life-of-the-sd-card/
https://www.zdnet.com/article/raspberry-pi-extending-the-life-of-the-sd-card/

Arednsig - Installation

1. If upgrading from a previous Raspbian version, first backup the user home folder
by running

zip -r pi_bak.zip /home/pi/*

Copy the pi_bak.zip file to a thumb drive or some other storage media.

2. Copy the new Raspbian OS disk image to the SD card. Follow raspbian
instructions for copying the disk image to the SD card.

3. On the router turn off any port forwarding to the raspberry pi. This is a temporary
security precaution until ssh keys are installed.

4. Attach a monitor, keyboard, and mouse. Run the command

sudo raspi-config

and change the following items

hostname {your host name}
password {your password}
ssh ON
region US
timezone {your timezone}
keyboard US

5. If not already connected, connect the raspberry pi to your LAN.

6. Use ssh to shell to user pi with the password set in step 4

ssh pi@{your host name}.local

7. Update the package database and install vim

sudo apt-get update
sudo apt-get install vim

vim is an editor that makes it easy to make changes in configuration files.
Alternatively you can use nano or some other terminal based editor of your
choice.

8. On the client computer, create an ssh key pair. Create in the user home folder a
folder named .ssh. In the .ssh folder create a file named authorized_keys, and
copy the public key to it.

9. If they will not be used, disable WiFi and Bluetooth. Backup and then modify
/boot/config.txt by adding the following two lines to the end of the file:

dtoverlay=pi3-disable-wifi
dtoverlay=pi3-disable-bt

Page 8 of 12

Arednsig - Installation

and run the once off command:

sudo systemctl disable hciuart

10.Backup and then modify /etc/ssh/sshd_config as follows

#PermitRootLogin prohibit-password
PermitRootLogin no
⁝
#PasswordAuthentication yes
PasswordAuthentication no
⁝
#X11Forwarding yes
X11Forwarding no

The above enhances security when using secure shell (ssh) to access the
raspberry pi.

11.Setup the temporary file system (tmpfs) by backing up and then modifying
/etc/fstab. Add the following lines to the bottom of the file.

uncomment if needed for web appstial logs in ram to reduce
stress on the SD card due to frequent writes.
tmpfs /tmp tmpfs nodev,nosuid,size=20M 0 0
tmpfs /var/tmp tmpfs defaults,noatime,nosuid,size=20m 0 0
tmpfs /var/log tmpfs defaults,noatime,nosuid,mode=0755,size=20m 0 0
tmpfs /var/spool/mqueue tmpfs

defaults,noatime,nosuid,mode=0700,gid=12,size=20m 0 0

This highly recommended step configures the raspberry pi to store all log files
and temporary files in RAM. Unless configured to use an external hard drive, the
raspberry pi mounts the root file system to the SD card. Log files and temporary
files are frequently written to the file system, resulting in wear on the SD card.
Storing these files in RAM saves the SD card from such wear. Note that all log
files and temporary files are lost upon reboot or power down.

12.Reboot the raspberry pi.

13.Optionally run all software updates

 sudo apt-get upgrade
sudo reboot

14.Backup /etc/rc.local and then add the user start up script. For example add the
following line to /etc/rc.local

(su - pi -c "bin/startup.sh")&

Page 9 of 12

Arednsig - Installation

15. Install rrdtool

sudo apt-get install rrdtool

rrdtool maintains round-robin databases and generates charts for display in web
pages. rrdtool can run on the same host as Maria (mySql). However they are
not interoperable with each other.

16. Install LAMP. This is the standard Linux web server “stack”.

Apache2
======
sudo apt-get install apache2 -y
sudo a2enmod rewrite
systemctl restart apache2

PHP
===
sudo apt-get install php libapache2-mod-php -y
systemctl restart apache2

MySQL
=====
sudo apt-get install mariadb-server mariadb-client php-mysql -y
systemctl restart apache2

17.Backup and then modify /etc/apache2/mods-available/userdir.conf. For
example,

changed 2020-01-15 by JLO to allow user .htaccess file
#AllowOverride FileInfo AuthConfig Limit Indexes
AllowOverride All

This enables apache to use the .htaccess file in the user’s document root folder.

18.Enable user directories in apache2 by running

a2enmod userdir

19.Backup and then modify /etc/apache2/mods-available/php7.3.conf to allow
PHP scripts to run in user directories by commenting the lines at bottom of file.
For example,

changed 2020-01-15 by JLO to enable user php scripts
#<IfModule mod_userdir.c>
<Directory /home/*/public_html>
php_admin_flag engine Off
</Directory>
#</IfModule>

Page 10 of 12

Arednsig - Installation

20.Backup and then modify /etc/apache2/sites-available/000-default.conf. For
example,

 # changed 2020-01-15 by JLO to make user
 # pi the html document root
 #DocumentRoot /var/www/html
 DocumentRoot /home/pi/public_html

This makes the pi user public_html folder the document root for the raspberry pi.
For example a client request http://raspi.local/myDocument.html would cause
Apache to look for the document in the folder /home/pi/public_html.

21.Backup and then modify /etc/apache2/envvars to create apache2 logs in tmpfs.
Add the following lines at the top of the file, for example,

added 2020-01-15 by JLO to allow apache to use tmpfs
if [! -d /var/log/apache2]; then
mkdir /var/log/apache2
fi
if [! -d /var/log/mysql]; then
mkdir /var/log/mysql
fi

Without these lines Apache will fail to start when the system reboots. When the
system reboots the folders /var/log/apache2 and /var/log/mysql will not exist if
logs are using the temporary file system in RAM. Apache will fail to start if these
folders are not present. Adding the above lines causes Apache to create these
folders when the system boots up.

22.Enable Apache to access files in the the tmpfs /tmp folder by backing up and
then modifying /lib/systemd/system/apache2.service.

changed {date} by {name} to enable apache to follow
symlinks to the /tmp folder in tmpfs
#PrivateTmp=true
PrivateTmp=false

This change enable Apache to follow symbolic links in the user document root
(public_html) folder to folders and files in the temporary file system. Making this
change eliminates the need to bind the /tmp folder to the dynamic folder, as
described in step 7 in the software installation section above.

Reload system deamons

sudo systemctl daemon-reload

Restart apache2 service

Page 11 of 12

Arednsig - Installation

sudo systemctl restart apache2

23.Reboot the raspberry pi.

24.Copy the backup file pi_bak.zip from the thumb drive media to the /home/pi
folder. Restore desired files and folders from backup archive by running

unzip pi_bak.zip

Use mv to move folders and files to their appropriate locations.

25.Test all the above modifications.

Page 12 of 12

