'use strict'; function __$strToBlobUri(str, mime, isBinary) {try {return window.URL.createObjectURL(new Blob([Uint8Array.from(str.split('').map(function(c) {return c.charCodeAt(0)}))], {type: mime}));} catch (e) {return "data:" + mime + (isBinary ? ";base64," : ",") + str;}} L.SVG.Tile = L.SVG.extend({ initialize: function (tileCoord, tileSize, options) { L.SVG.prototype.initialize.call(this, options); this._tileCoord = tileCoord; this._size = tileSize; this._initContainer(); this._container.setAttribute('width', this._size.x); this._container.setAttribute('height', this._size.y); this._container.setAttribute('viewBox', [0, 0, this._size.x, this._size.y].join(' ')); this._layers = {}; }, getCoord: function() { return this._tileCoord; }, getContainer: function() { return this._container; }, onAdd: L.Util.falseFn, addTo: function(map) { this._map = map; if (this.options.interactive) { for (var i in this._layers) { var layer = this._layers[i]; // By default, Leaflet tiles do not have pointer events. layer._path.style.pointerEvents = 'auto'; this._map._targets[L.stamp(layer._path)] = layer; } } }, removeFrom: function (map) { if (this.options.interactive) { for (var i in this._layers) { var layer = this._layers[i]; delete this._map._targets[L.stamp(layer._path)]; } } delete this._map; }, _initContainer: function() { L.SVG.prototype._initContainer.call(this); var rect = L.SVG.create('rect'); }, /// TODO: Modify _initPath to include an extra parameter, a group name /// to order symbolizers by z-index _addPath: function (layer) { this._rootGroup.appendChild(layer._path); this._layers[L.stamp(layer)] = layer; }, _updateIcon: function (layer) { var path = layer._path = L.SVG.create('image'), icon = layer.options.icon, options = icon.options, size = L.point(options.iconSize), anchor = options.iconAnchor || size && size.divideBy(2, true), p = layer._point.subtract(anchor); path.setAttribute('x', p.x); path.setAttribute('y', p.y); path.setAttribute('width', size.x + 'px'); path.setAttribute('height', size.y + 'px'); path.setAttribute('href', options.iconUrl); } }); L.svg.tile = function(tileCoord, tileSize, opts){ return new L.SVG.Tile(tileCoord, tileSize, opts); }; // 🍂class Symbolizer // 🍂inherits Class // The abstract Symbolizer class is mostly equivalent in concept to a `L.Path` - it's an interface for // polylines, polygons and circles. But instead of representing leaflet Layers, // it represents things that have to be drawn inside a vector tile. // A vector tile *data layer* might have zero, one, or more *symbolizer definitions* // A vector tile *feature* might have zero, one, or more *symbolizers*. // The actual symbolizers applied will depend on filters and the symbolizer functions. var Symbolizer = L.Class.extend({ // 🍂method initialize(feature: GeoJSON, pxPerExtent: Number) // Initializes a new Line Symbolizer given a GeoJSON feature and the // pixel-to-coordinate-units ratio. Internal use only. // 🍂method render(renderer, style) // Renders this symbolizer in the given tiled renderer, with the given // `L.Path` options. Internal use only. render: function(renderer, style) { this._renderer = renderer; this.options = style; renderer._initPath(this); renderer._updateStyle(this); }, // 🍂method render(renderer, style) // Updates the `L.Path` options used to style this symbolizer, and re-renders it. // Internal use only. updateStyle: function(renderer, style) { this.options = style; renderer._updateStyle(this); }, _getPixelBounds: function() { var parts = this._parts; var bounds = L.bounds([]); for (var i = 0; i < parts.length; i++) { var part = parts[i]; for (var j = 0; j < part.length; j++) { bounds.extend(part[j]); } } var w = this._clickTolerance(), p = new L.Point(w, w); bounds.min._subtract(p); bounds.max._add(p); return bounds; }, _clickTolerance: L.Path.prototype._clickTolerance, }); // Contains mixins which are common to the Line Symbolizer and the Fill Symbolizer. var PolyBase = { _makeFeatureParts: function(feat, pxPerExtent) { var rings = feat.geometry; var coord; this._parts = []; for (var i = 0; i < rings.length; i++) { var ring = rings[i]; var part = []; for (var j = 0; j < ring.length; j++) { coord = ring[j]; // Protobuf vector tiles return {x: , y:} // Geojson-vt returns [,] part.push(L.point(coord).scaleBy(pxPerExtent)); } this._parts.push(part); } }, makeInteractive: function() { this._pxBounds = this._getPixelBounds(); } }; // 🍂class PointSymbolizer // 🍂inherits CircleMarker // A symbolizer for points. var PointSymbolizer = L.CircleMarker.extend({ includes: Symbolizer.prototype, statics: { iconCache: {} }, initialize: function(feature, pxPerExtent) { this.properties = feature.properties; this._makeFeatureParts(feature, pxPerExtent); }, render: function(renderer, style) { Symbolizer.prototype.render.call(this, renderer, style); this._radius = style.radius || L.CircleMarker.prototype.options.radius; this._updatePath(); }, _makeFeatureParts: function(feat, pxPerExtent) { var coord = feat.geometry[0]; if (typeof coord[0] === 'object' && 'x' in coord[0]) { // Protobuf vector tiles return [{x: , y:}] this._point = L.point(coord[0]).scaleBy(pxPerExtent); this._empty = L.Util.falseFn; } else { // Geojson-vt returns [,] this._point = L.point(coord).scaleBy(pxPerExtent); this._empty = L.Util.falseFn; } }, makeInteractive: function() { this._updateBounds(); }, updateStyle: function(renderer, style) { this._radius = style.radius || this._radius; this._updateBounds(); return Symbolizer.prototype.updateStyle.call(this, renderer, style); }, _updateBounds: function() { var icon = this.options.icon; if (icon) { var size = L.point(icon.options.iconSize), anchor = icon.options.iconAnchor || size && size.divideBy(2, true), p = this._point.subtract(anchor); this._pxBounds = new L.Bounds(p, p.add(icon.options.iconSize)); } else { L.CircleMarker.prototype._updateBounds.call(this); } }, _updatePath: function() { if (this.options.icon) { this._renderer._updateIcon(this); } else { L.CircleMarker.prototype._updatePath.call(this); } }, _getImage: function () { if (this.options.icon) { var url = this.options.icon.options.iconUrl, img = PointSymbolizer.iconCache[url]; if (!img) { var icon = this.options.icon; img = PointSymbolizer.iconCache[url] = icon.createIcon(); } return img; } else { return null; } }, _containsPoint: function(p) { var icon = this.options.icon; if (icon) { return this._pxBounds.contains(p); } else { return L.CircleMarker.prototype._containsPoint.call(this, p); } } }); // 🍂class LineSymbolizer // 🍂inherits Polyline // A symbolizer for lines. Can be applied to line and polygon features. var LineSymbolizer = L.Polyline.extend({ includes: [Symbolizer.prototype, PolyBase], initialize: function(feature, pxPerExtent) { this.properties = feature.properties; this._makeFeatureParts(feature, pxPerExtent); }, render: function(renderer, style) { style.fill = false; Symbolizer.prototype.render.call(this, renderer, style); this._updatePath(); }, updateStyle: function(renderer, style) { style.fill = false; Symbolizer.prototype.updateStyle.call(this, renderer, style); }, }); // 🍂class FillSymbolizer // 🍂inherits Polyline // A symbolizer for filled areas. Applies only to polygon features. var FillSymbolizer = L.Polygon.extend({ includes: [Symbolizer.prototype, PolyBase], initialize: function(feature, pxPerExtent) { this.properties = feature.properties; this._makeFeatureParts(feature, pxPerExtent); }, render: function(renderer, style) { Symbolizer.prototype.render.call(this, renderer, style); this._updatePath(); } }); /* 🍂class VectorGrid * 🍂inherits GridLayer * * A `VectorGrid` is a generic, abstract class for displaying tiled vector data. * it provides facilities for symbolizing and rendering the data in the vector * tiles, but lacks the functionality to fetch the vector tiles from wherever * they are. * * Extends Leaflet's `L.GridLayer`. */ L.VectorGrid = L.GridLayer.extend({ options: { // 🍂option rendererFactory = L.svg.tile // A factory method which will be used to instantiate the per-tile renderers. rendererFactory: L.svg.tile, // 🍂option vectorTileLayerStyles: Object = {} // A data structure holding initial symbolizer definitions for the vector features. vectorTileLayerStyles: {}, // 🍂option interactive: Boolean = false // Whether this `VectorGrid` fires `Interactive Layer` events. interactive: false, // 🍂option getFeatureId: Function = undefined // A function that, given a vector feature, returns an unique identifier for it, e.g. // `function(feat) { return feat.properties.uniqueIdField; }`. // Must be defined for `setFeatureStyle` to work. }, initialize: function(options) { L.setOptions(this, options); L.GridLayer.prototype.initialize.apply(this, arguments); if (this.options.getFeatureId) { this._vectorTiles = {}; this._overriddenStyles = {}; this.on('tileunload', function(e) { var key = this._tileCoordsToKey(e.coords), tile = this._vectorTiles[key]; if (tile && this._map) { tile.removeFrom(this._map); } delete this._vectorTiles[key]; }, this); } this._dataLayerNames = {}; }, createTile: function(coords, done) { var storeFeatures = this.options.getFeatureId; var tileSize = this.getTileSize(); var renderer = this.options.rendererFactory(coords, tileSize, this.options); var vectorTilePromise = this._getVectorTilePromise(coords); if (storeFeatures) { this._vectorTiles[this._tileCoordsToKey(coords)] = renderer; renderer._features = {}; } vectorTilePromise.then( function renderTile(vectorTile) { for (var layerName in vectorTile.layers) { this._dataLayerNames[layerName] = true; var layer = vectorTile.layers[layerName]; var pxPerExtent = this.getTileSize().divideBy(layer.extent); var layerStyle = this.options.vectorTileLayerStyles[ layerName ] || L.Path.prototype.options; for (var i = 0; i < layer.features.length; i++) { var feat = layer.features[i]; var id; var styleOptions = layerStyle; if (storeFeatures) { id = this.options.getFeatureId(feat); var styleOverride = this._overriddenStyles[id]; if (styleOverride) { if (styleOverride[layerName]) { styleOptions = styleOverride[layerName]; } else { styleOptions = styleOverride; } } } if (styleOptions instanceof Function) { styleOptions = styleOptions(feat.properties, coords.z); } if (!(styleOptions instanceof Array)) { styleOptions = [styleOptions]; } if (!styleOptions.length) { continue; } var featureLayer = this._createLayer(feat, pxPerExtent); for (var j = 0; j < styleOptions.length; j++) { var style = L.extend({}, L.Path.prototype.options, styleOptions[j]); featureLayer.render(renderer, style); renderer._addPath(featureLayer); } if (this.options.interactive) { featureLayer.makeInteractive(); } if (storeFeatures) { renderer._features[id] = { layerName: layerName, feature: featureLayer }; } } } if (this._map != null) { renderer.addTo(this._map); } L.Util.requestAnimFrame(done.bind(coords, null, null)); }.bind(this)); return renderer.getContainer(); }, // 🍂method setFeatureStyle(id: Number, layerStyle: L.Path Options): this // Given the unique ID for a vector features (as per the `getFeatureId` option), // re-symbolizes that feature across all tiles it appears in. setFeatureStyle: function(id, layerStyle) { this._overriddenStyles[id] = layerStyle; for (var tileKey in this._vectorTiles) { var tile = this._vectorTiles[tileKey]; var features = tile._features; var data = features[id]; if (data) { var feat = data.feature; var styleOptions = layerStyle; if (layerStyle[data.layerName]) { styleOptions = layerStyle[data.layerName]; } this._updateStyles(feat, tile, styleOptions); } } return this; }, // 🍂method setFeatureStyle(id: Number): this // Reverts the effects of a previous `setFeatureStyle` call. resetFeatureStyle: function(id) { delete this._overriddenStyles[id]; for (var tileKey in this._vectorTiles) { var tile = this._vectorTiles[tileKey]; var features = tile._features; var data = features[id]; if (data) { var feat = data.feature; var styleOptions = this.options.vectorTileLayerStyles[ data.layerName ] || L.Path.prototype.options; this._updateStyles(feat, tile, styleOptions); } } return this; }, // 🍂method getDataLayerNames(): Array // Returns an array of strings, with all the known names of data layers in // the vector tiles displayed. Useful for introspection. getDataLayerNames: function() { return Object.keys(this._dataLayerNames); }, _updateStyles: function(feat, renderer, styleOptions) { styleOptions = (styleOptions instanceof Function) ? styleOptions(feat.properties, renderer.getCoord().z) : styleOptions; if (!(styleOptions instanceof Array)) { styleOptions = [styleOptions]; } for (var j = 0; j < styleOptions.length; j++) { var style = L.extend({}, L.Path.prototype.options, styleOptions[j]); feat.updateStyle(renderer, style); } }, _createLayer: function(feat, pxPerExtent, layerStyle) { var layer; switch (feat.type) { case 1: layer = new PointSymbolizer(feat, pxPerExtent); break; case 2: layer = new LineSymbolizer(feat, pxPerExtent); break; case 3: layer = new FillSymbolizer(feat, pxPerExtent); break; } if (this.options.interactive) { layer.addEventParent(this); } return layer; }, }); /* * 🍂section Extension methods * * Classes inheriting from `VectorGrid` **must** define the `_getVectorTilePromise` private method. * * 🍂method getVectorTilePromise(coords: Object): Promise * Given a `coords` object in the form of `{x: Number, y: Number, z: Number}`, * this function must return a `Promise` for a vector tile. * */ L.vectorGrid = function (options) { return new L.VectorGrid(options); }; var read = function (buffer, offset, isLE, mLen, nBytes) { var e, m; var eLen = nBytes * 8 - mLen - 1; var eMax = (1 << eLen) - 1; var eBias = eMax >> 1; var nBits = -7; var i = isLE ? (nBytes - 1) : 0; var d = isLE ? -1 : 1; var s = buffer[offset + i]; i += d; e = s & ((1 << (-nBits)) - 1); s >>= (-nBits); nBits += eLen; for (; nBits > 0; e = e * 256 + buffer[offset + i], i += d, nBits -= 8) {} m = e & ((1 << (-nBits)) - 1); e >>= (-nBits); nBits += mLen; for (; nBits > 0; m = m * 256 + buffer[offset + i], i += d, nBits -= 8) {} if (e === 0) { e = 1 - eBias; } else if (e === eMax) { return m ? NaN : ((s ? -1 : 1) * Infinity) } else { m = m + Math.pow(2, mLen); e = e - eBias; } return (s ? -1 : 1) * m * Math.pow(2, e - mLen) }; var write = function (buffer, value, offset, isLE, mLen, nBytes) { var e, m, c; var eLen = nBytes * 8 - mLen - 1; var eMax = (1 << eLen) - 1; var eBias = eMax >> 1; var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0); var i = isLE ? 0 : (nBytes - 1); var d = isLE ? 1 : -1; var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0; value = Math.abs(value); if (isNaN(value) || value === Infinity) { m = isNaN(value) ? 1 : 0; e = eMax; } else { e = Math.floor(Math.log(value) / Math.LN2); if (value * (c = Math.pow(2, -e)) < 1) { e--; c *= 2; } if (e + eBias >= 1) { value += rt / c; } else { value += rt * Math.pow(2, 1 - eBias); } if (value * c >= 2) { e++; c /= 2; } if (e + eBias >= eMax) { m = 0; e = eMax; } else if (e + eBias >= 1) { m = (value * c - 1) * Math.pow(2, mLen); e = e + eBias; } else { m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen); e = 0; } } for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) {} e = (e << mLen) | m; eLen += mLen; for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) {} buffer[offset + i - d] |= s * 128; }; var index$1 = { read: read, write: write }; var index = Pbf; var ieee754 = index$1; function Pbf(buf) { this.buf = ArrayBuffer.isView && ArrayBuffer.isView(buf) ? buf : new Uint8Array(buf || 0); this.pos = 0; this.type = 0; this.length = this.buf.length; } Pbf.Varint = 0; // varint: int32, int64, uint32, uint64, sint32, sint64, bool, enum Pbf.Fixed64 = 1; // 64-bit: double, fixed64, sfixed64 Pbf.Bytes = 2; // length-delimited: string, bytes, embedded messages, packed repeated fields Pbf.Fixed32 = 5; // 32-bit: float, fixed32, sfixed32 var SHIFT_LEFT_32 = (1 << 16) * (1 << 16); var SHIFT_RIGHT_32 = 1 / SHIFT_LEFT_32; Pbf.prototype = { destroy: function() { this.buf = null; }, // === READING ================================================================= readFields: function(readField, result, end) { var this$1 = this; end = end || this.length; while (this.pos < end) { var val = this$1.readVarint(), tag = val >> 3, startPos = this$1.pos; this$1.type = val & 0x7; readField(tag, result, this$1); if (this$1.pos === startPos) { this$1.skip(val); } } return result; }, readMessage: function(readField, result) { return this.readFields(readField, result, this.readVarint() + this.pos); }, readFixed32: function() { var val = readUInt32(this.buf, this.pos); this.pos += 4; return val; }, readSFixed32: function() { var val = readInt32(this.buf, this.pos); this.pos += 4; return val; }, // 64-bit int handling is based on github.com/dpw/node-buffer-more-ints (MIT-licensed) readFixed64: function() { var val = readUInt32(this.buf, this.pos) + readUInt32(this.buf, this.pos + 4) * SHIFT_LEFT_32; this.pos += 8; return val; }, readSFixed64: function() { var val = readUInt32(this.buf, this.pos) + readInt32(this.buf, this.pos + 4) * SHIFT_LEFT_32; this.pos += 8; return val; }, readFloat: function() { var val = ieee754.read(this.buf, this.pos, true, 23, 4); this.pos += 4; return val; }, readDouble: function() { var val = ieee754.read(this.buf, this.pos, true, 52, 8); this.pos += 8; return val; }, readVarint: function(isSigned) { var buf = this.buf, val, b; b = buf[this.pos++]; val = b & 0x7f; if (b < 0x80) { return val; } b = buf[this.pos++]; val |= (b & 0x7f) << 7; if (b < 0x80) { return val; } b = buf[this.pos++]; val |= (b & 0x7f) << 14; if (b < 0x80) { return val; } b = buf[this.pos++]; val |= (b & 0x7f) << 21; if (b < 0x80) { return val; } b = buf[this.pos]; val |= (b & 0x0f) << 28; return readVarintRemainder(val, isSigned, this); }, readVarint64: function() { // for compatibility with v2.0.1 return this.readVarint(true); }, readSVarint: function() { var num = this.readVarint(); return num % 2 === 1 ? (num + 1) / -2 : num / 2; // zigzag encoding }, readBoolean: function() { return Boolean(this.readVarint()); }, readString: function() { var end = this.readVarint() + this.pos, str = readUtf8(this.buf, this.pos, end); this.pos = end; return str; }, readBytes: function() { var end = this.readVarint() + this.pos, buffer = this.buf.subarray(this.pos, end); this.pos = end; return buffer; }, // verbose for performance reasons; doesn't affect gzipped size readPackedVarint: function(arr, isSigned) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readVarint(isSigned)); } return arr; }, readPackedSVarint: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readSVarint()); } return arr; }, readPackedBoolean: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readBoolean()); } return arr; }, readPackedFloat: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readFloat()); } return arr; }, readPackedDouble: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readDouble()); } return arr; }, readPackedFixed32: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readFixed32()); } return arr; }, readPackedSFixed32: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readSFixed32()); } return arr; }, readPackedFixed64: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readFixed64()); } return arr; }, readPackedSFixed64: function(arr) { var this$1 = this; var end = readPackedEnd(this); arr = arr || []; while (this.pos < end) { arr.push(this$1.readSFixed64()); } return arr; }, skip: function(val) { var type = val & 0x7; if (type === Pbf.Varint) { while (this.buf[this.pos++] > 0x7f) {} } else if (type === Pbf.Bytes) { this.pos = this.readVarint() + this.pos; } else if (type === Pbf.Fixed32) { this.pos += 4; } else if (type === Pbf.Fixed64) { this.pos += 8; } else { throw new Error('Unimplemented type: ' + type); } }, // === WRITING ================================================================= writeTag: function(tag, type) { this.writeVarint((tag << 3) | type); }, realloc: function(min) { var length = this.length || 16; while (length < this.pos + min) { length *= 2; } if (length !== this.length) { var buf = new Uint8Array(length); buf.set(this.buf); this.buf = buf; this.length = length; } }, finish: function() { this.length = this.pos; this.pos = 0; return this.buf.subarray(0, this.length); }, writeFixed32: function(val) { this.realloc(4); writeInt32(this.buf, val, this.pos); this.pos += 4; }, writeSFixed32: function(val) { this.realloc(4); writeInt32(this.buf, val, this.pos); this.pos += 4; }, writeFixed64: function(val) { this.realloc(8); writeInt32(this.buf, val & -1, this.pos); writeInt32(this.buf, Math.floor(val * SHIFT_RIGHT_32), this.pos + 4); this.pos += 8; }, writeSFixed64: function(val) { this.realloc(8); writeInt32(this.buf, val & -1, this.pos); writeInt32(this.buf, Math.floor(val * SHIFT_RIGHT_32), this.pos + 4); this.pos += 8; }, writeVarint: function(val) { val = +val || 0; if (val > 0xfffffff || val < 0) { writeBigVarint(val, this); return; } this.realloc(4); this.buf[this.pos++] = val & 0x7f | (val > 0x7f ? 0x80 : 0); if (val <= 0x7f) { return; } this.buf[this.pos++] = ((val >>>= 7) & 0x7f) | (val > 0x7f ? 0x80 : 0); if (val <= 0x7f) { return; } this.buf[this.pos++] = ((val >>>= 7) & 0x7f) | (val > 0x7f ? 0x80 : 0); if (val <= 0x7f) { return; } this.buf[this.pos++] = (val >>> 7) & 0x7f; }, writeSVarint: function(val) { this.writeVarint(val < 0 ? -val * 2 - 1 : val * 2); }, writeBoolean: function(val) { this.writeVarint(Boolean(val)); }, writeString: function(str) { str = String(str); this.realloc(str.length * 4); this.pos++; // reserve 1 byte for short string length var startPos = this.pos; // write the string directly to the buffer and see how much was written this.pos = writeUtf8(this.buf, str, this.pos); var len = this.pos - startPos; if (len >= 0x80) { makeRoomForExtraLength(startPos, len, this); } // finally, write the message length in the reserved place and restore the position this.pos = startPos - 1; this.writeVarint(len); this.pos += len; }, writeFloat: function(val) { this.realloc(4); ieee754.write(this.buf, val, this.pos, true, 23, 4); this.pos += 4; }, writeDouble: function(val) { this.realloc(8); ieee754.write(this.buf, val, this.pos, true, 52, 8); this.pos += 8; }, writeBytes: function(buffer) { var this$1 = this; var len = buffer.length; this.writeVarint(len); this.realloc(len); for (var i = 0; i < len; i++) { this$1.buf[this$1.pos++] = buffer[i]; } }, writeRawMessage: function(fn, obj) { this.pos++; // reserve 1 byte for short message length // write the message directly to the buffer and see how much was written var startPos = this.pos; fn(obj, this); var len = this.pos - startPos; if (len >= 0x80) { makeRoomForExtraLength(startPos, len, this); } // finally, write the message length in the reserved place and restore the position this.pos = startPos - 1; this.writeVarint(len); this.pos += len; }, writeMessage: function(tag, fn, obj) { this.writeTag(tag, Pbf.Bytes); this.writeRawMessage(fn, obj); }, writePackedVarint: function(tag, arr) { this.writeMessage(tag, writePackedVarint, arr); }, writePackedSVarint: function(tag, arr) { this.writeMessage(tag, writePackedSVarint, arr); }, writePackedBoolean: function(tag, arr) { this.writeMessage(tag, writePackedBoolean, arr); }, writePackedFloat: function(tag, arr) { this.writeMessage(tag, writePackedFloat, arr); }, writePackedDouble: function(tag, arr) { this.writeMessage(tag, writePackedDouble, arr); }, writePackedFixed32: function(tag, arr) { this.writeMessage(tag, writePackedFixed32, arr); }, writePackedSFixed32: function(tag, arr) { this.writeMessage(tag, writePackedSFixed32, arr); }, writePackedFixed64: function(tag, arr) { this.writeMessage(tag, writePackedFixed64, arr); }, writePackedSFixed64: function(tag, arr) { this.writeMessage(tag, writePackedSFixed64, arr); }, writeBytesField: function(tag, buffer) { this.writeTag(tag, Pbf.Bytes); this.writeBytes(buffer); }, writeFixed32Field: function(tag, val) { this.writeTag(tag, Pbf.Fixed32); this.writeFixed32(val); }, writeSFixed32Field: function(tag, val) { this.writeTag(tag, Pbf.Fixed32); this.writeSFixed32(val); }, writeFixed64Field: function(tag, val) { this.writeTag(tag, Pbf.Fixed64); this.writeFixed64(val); }, writeSFixed64Field: function(tag, val) { this.writeTag(tag, Pbf.Fixed64); this.writeSFixed64(val); }, writeVarintField: function(tag, val) { this.writeTag(tag, Pbf.Varint); this.writeVarint(val); }, writeSVarintField: function(tag, val) { this.writeTag(tag, Pbf.Varint); this.writeSVarint(val); }, writeStringField: function(tag, str) { this.writeTag(tag, Pbf.Bytes); this.writeString(str); }, writeFloatField: function(tag, val) { this.writeTag(tag, Pbf.Fixed32); this.writeFloat(val); }, writeDoubleField: function(tag, val) { this.writeTag(tag, Pbf.Fixed64); this.writeDouble(val); }, writeBooleanField: function(tag, val) { this.writeVarintField(tag, Boolean(val)); } }; function readVarintRemainder(l, s, p) { var buf = p.buf, h, b; b = buf[p.pos++]; h = (b & 0x70) >> 4; if (b < 0x80) { return toNum(l, h, s); } b = buf[p.pos++]; h |= (b & 0x7f) << 3; if (b < 0x80) { return toNum(l, h, s); } b = buf[p.pos++]; h |= (b & 0x7f) << 10; if (b < 0x80) { return toNum(l, h, s); } b = buf[p.pos++]; h |= (b & 0x7f) << 17; if (b < 0x80) { return toNum(l, h, s); } b = buf[p.pos++]; h |= (b & 0x7f) << 24; if (b < 0x80) { return toNum(l, h, s); } b = buf[p.pos++]; h |= (b & 0x01) << 31; if (b < 0x80) { return toNum(l, h, s); } throw new Error('Expected varint not more than 10 bytes'); } function readPackedEnd(pbf) { return pbf.type === Pbf.Bytes ? pbf.readVarint() + pbf.pos : pbf.pos + 1; } function toNum(low, high, isSigned) { if (isSigned) { return high * 0x100000000 + (low >>> 0); } return ((high >>> 0) * 0x100000000) + (low >>> 0); } function writeBigVarint(val, pbf) { var low, high; if (val >= 0) { low = (val % 0x100000000) | 0; high = (val / 0x100000000) | 0; } else { low = ~(-val % 0x100000000); high = ~(-val / 0x100000000); if (low ^ 0xffffffff) { low = (low + 1) | 0; } else { low = 0; high = (high + 1) | 0; } } if (val >= 0x10000000000000000 || val < -0x10000000000000000) { throw new Error('Given varint doesn\'t fit into 10 bytes'); } pbf.realloc(10); writeBigVarintLow(low, high, pbf); writeBigVarintHigh(high, pbf); } function writeBigVarintLow(low, high, pbf) { pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7; pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7; pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7; pbf.buf[pbf.pos++] = low & 0x7f | 0x80; low >>>= 7; pbf.buf[pbf.pos] = low & 0x7f; } function writeBigVarintHigh(high, pbf) { var lsb = (high & 0x07) << 4; pbf.buf[pbf.pos++] |= lsb | ((high >>>= 3) ? 0x80 : 0); if (!high) { return; } pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; } pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; } pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; } pbf.buf[pbf.pos++] = high & 0x7f | ((high >>>= 7) ? 0x80 : 0); if (!high) { return; } pbf.buf[pbf.pos++] = high & 0x7f; } function makeRoomForExtraLength(startPos, len, pbf) { var extraLen = len <= 0x3fff ? 1 : len <= 0x1fffff ? 2 : len <= 0xfffffff ? 3 : Math.ceil(Math.log(len) / (Math.LN2 * 7)); // if 1 byte isn't enough for encoding message length, shift the data to the right pbf.realloc(extraLen); for (var i = pbf.pos - 1; i >= startPos; i--) { pbf.buf[i + extraLen] = pbf.buf[i]; } } function writePackedVarint(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeVarint(arr[i]); } } function writePackedSVarint(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeSVarint(arr[i]); } } function writePackedFloat(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeFloat(arr[i]); } } function writePackedDouble(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeDouble(arr[i]); } } function writePackedBoolean(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeBoolean(arr[i]); } } function writePackedFixed32(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeFixed32(arr[i]); } } function writePackedSFixed32(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeSFixed32(arr[i]); } } function writePackedFixed64(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeFixed64(arr[i]); } } function writePackedSFixed64(arr, pbf) { for (var i = 0; i < arr.length; i++) { pbf.writeSFixed64(arr[i]); } } // Buffer code below from https://github.com/feross/buffer, MIT-licensed function readUInt32(buf, pos) { return ((buf[pos]) | (buf[pos + 1] << 8) | (buf[pos + 2] << 16)) + (buf[pos + 3] * 0x1000000); } function writeInt32(buf, val, pos) { buf[pos] = val; buf[pos + 1] = (val >>> 8); buf[pos + 2] = (val >>> 16); buf[pos + 3] = (val >>> 24); } function readInt32(buf, pos) { return ((buf[pos]) | (buf[pos + 1] << 8) | (buf[pos + 2] << 16)) + (buf[pos + 3] << 24); } function readUtf8(buf, pos, end) { var str = ''; var i = pos; while (i < end) { var b0 = buf[i]; var c = null; // codepoint var bytesPerSequence = b0 > 0xEF ? 4 : b0 > 0xDF ? 3 : b0 > 0xBF ? 2 : 1; if (i + bytesPerSequence > end) { break; } var b1, b2, b3; if (bytesPerSequence === 1) { if (b0 < 0x80) { c = b0; } } else if (bytesPerSequence === 2) { b1 = buf[i + 1]; if ((b1 & 0xC0) === 0x80) { c = (b0 & 0x1F) << 0x6 | (b1 & 0x3F); if (c <= 0x7F) { c = null; } } } else if (bytesPerSequence === 3) { b1 = buf[i + 1]; b2 = buf[i + 2]; if ((b1 & 0xC0) === 0x80 && (b2 & 0xC0) === 0x80) { c = (b0 & 0xF) << 0xC | (b1 & 0x3F) << 0x6 | (b2 & 0x3F); if (c <= 0x7FF || (c >= 0xD800 && c <= 0xDFFF)) { c = null; } } } else if (bytesPerSequence === 4) { b1 = buf[i + 1]; b2 = buf[i + 2]; b3 = buf[i + 3]; if ((b1 & 0xC0) === 0x80 && (b2 & 0xC0) === 0x80 && (b3 & 0xC0) === 0x80) { c = (b0 & 0xF) << 0x12 | (b1 & 0x3F) << 0xC | (b2 & 0x3F) << 0x6 | (b3 & 0x3F); if (c <= 0xFFFF || c >= 0x110000) { c = null; } } } if (c === null) { c = 0xFFFD; bytesPerSequence = 1; } else if (c > 0xFFFF) { c -= 0x10000; str += String.fromCharCode(c >>> 10 & 0x3FF | 0xD800); c = 0xDC00 | c & 0x3FF; } str += String.fromCharCode(c); i += bytesPerSequence; } return str; } function writeUtf8(buf, str, pos) { for (var i = 0, c, lead; i < str.length; i++) { c = str.charCodeAt(i); // code point if (c > 0xD7FF && c < 0xE000) { if (lead) { if (c < 0xDC00) { buf[pos++] = 0xEF; buf[pos++] = 0xBF; buf[pos++] = 0xBD; lead = c; continue; } else { c = lead - 0xD800 << 10 | c - 0xDC00 | 0x10000; lead = null; } } else { if (c > 0xDBFF || (i + 1 === str.length)) { buf[pos++] = 0xEF; buf[pos++] = 0xBF; buf[pos++] = 0xBD; } else { lead = c; } continue; } } else if (lead) { buf[pos++] = 0xEF; buf[pos++] = 0xBF; buf[pos++] = 0xBD; lead = null; } if (c < 0x80) { buf[pos++] = c; } else { if (c < 0x800) { buf[pos++] = c >> 0x6 | 0xC0; } else { if (c < 0x10000) { buf[pos++] = c >> 0xC | 0xE0; } else { buf[pos++] = c >> 0x12 | 0xF0; buf[pos++] = c >> 0xC & 0x3F | 0x80; } buf[pos++] = c >> 0x6 & 0x3F | 0x80; } buf[pos++] = c & 0x3F | 0x80; } } return pos; } var index$5 = Point$1; function Point$1(x, y) { this.x = x; this.y = y; } Point$1.prototype = { clone: function() { return new Point$1(this.x, this.y); }, add: function(p) { return this.clone()._add(p); }, sub: function(p) { return this.clone()._sub(p); }, mult: function(k) { return this.clone()._mult(k); }, div: function(k) { return this.clone()._div(k); }, rotate: function(a) { return this.clone()._rotate(a); }, matMult: function(m) { return this.clone()._matMult(m); }, unit: function() { return this.clone()._unit(); }, perp: function() { return this.clone()._perp(); }, round: function() { return this.clone()._round(); }, mag: function() { return Math.sqrt(this.x * this.x + this.y * this.y); }, equals: function(p) { return this.x === p.x && this.y === p.y; }, dist: function(p) { return Math.sqrt(this.distSqr(p)); }, distSqr: function(p) { var dx = p.x - this.x, dy = p.y - this.y; return dx * dx + dy * dy; }, angle: function() { return Math.atan2(this.y, this.x); }, angleTo: function(b) { return Math.atan2(this.y - b.y, this.x - b.x); }, angleWith: function(b) { return this.angleWithSep(b.x, b.y); }, // Find the angle of the two vectors, solving the formula for the cross product a x b = |a||b|sin(θ) for θ. angleWithSep: function(x, y) { return Math.atan2( this.x * y - this.y * x, this.x * x + this.y * y); }, _matMult: function(m) { var x = m[0] * this.x + m[1] * this.y, y = m[2] * this.x + m[3] * this.y; this.x = x; this.y = y; return this; }, _add: function(p) { this.x += p.x; this.y += p.y; return this; }, _sub: function(p) { this.x -= p.x; this.y -= p.y; return this; }, _mult: function(k) { this.x *= k; this.y *= k; return this; }, _div: function(k) { this.x /= k; this.y /= k; return this; }, _unit: function() { this._div(this.mag()); return this; }, _perp: function() { var y = this.y; this.y = this.x; this.x = -y; return this; }, _rotate: function(angle) { var cos = Math.cos(angle), sin = Math.sin(angle), x = cos * this.x - sin * this.y, y = sin * this.x + cos * this.y; this.x = x; this.y = y; return this; }, _round: function() { this.x = Math.round(this.x); this.y = Math.round(this.y); return this; } }; // constructs Point from an array if necessary Point$1.convert = function (a) { if (a instanceof Point$1) { return a; } if (Array.isArray(a)) { return new Point$1(a[0], a[1]); } return a; }; var Point = index$5; var vectortilefeature = VectorTileFeature$2; function VectorTileFeature$2(pbf, end, extent, keys, values) { // Public this.properties = {}; this.extent = extent; this.type = 0; // Private this._pbf = pbf; this._geometry = -1; this._keys = keys; this._values = values; pbf.readFields(readFeature, this, end); } function readFeature(tag, feature, pbf) { if (tag == 1) { feature.id = pbf.readVarint(); } else if (tag == 2) { readTag(pbf, feature); } else if (tag == 3) { feature.type = pbf.readVarint(); } else if (tag == 4) { feature._geometry = pbf.pos; } } function readTag(pbf, feature) { var end = pbf.readVarint() + pbf.pos; while (pbf.pos < end) { var key = feature._keys[pbf.readVarint()], value = feature._values[pbf.readVarint()]; feature.properties[key] = value; } } VectorTileFeature$2.types = ['Unknown', 'Point', 'LineString', 'Polygon']; VectorTileFeature$2.prototype.loadGeometry = function() { var pbf = this._pbf; pbf.pos = this._geometry; var end = pbf.readVarint() + pbf.pos, cmd = 1, length = 0, x = 0, y = 0, lines = [], line; while (pbf.pos < end) { if (!length) { var cmdLen = pbf.readVarint(); cmd = cmdLen & 0x7; length = cmdLen >> 3; } length--; if (cmd === 1 || cmd === 2) { x += pbf.readSVarint(); y += pbf.readSVarint(); if (cmd === 1) { // moveTo if (line) { lines.push(line); } line = []; } line.push(new Point(x, y)); } else if (cmd === 7) { // Workaround for https://github.com/mapbox/mapnik-vector-tile/issues/90 if (line) { line.push(line[0].clone()); // closePolygon } } else { throw new Error('unknown command ' + cmd); } } if (line) { lines.push(line); } return lines; }; VectorTileFeature$2.prototype.bbox = function() { var pbf = this._pbf; pbf.pos = this._geometry; var end = pbf.readVarint() + pbf.pos, cmd = 1, length = 0, x = 0, y = 0, x1 = Infinity, x2 = -Infinity, y1 = Infinity, y2 = -Infinity; while (pbf.pos < end) { if (!length) { var cmdLen = pbf.readVarint(); cmd = cmdLen & 0x7; length = cmdLen >> 3; } length--; if (cmd === 1 || cmd === 2) { x += pbf.readSVarint(); y += pbf.readSVarint(); if (x < x1) { x1 = x; } if (x > x2) { x2 = x; } if (y < y1) { y1 = y; } if (y > y2) { y2 = y; } } else if (cmd !== 7) { throw new Error('unknown command ' + cmd); } } return [x1, y1, x2, y2]; }; VectorTileFeature$2.prototype.toGeoJSON = function(x, y, z) { var size = this.extent * Math.pow(2, z), x0 = this.extent * x, y0 = this.extent * y, coords = this.loadGeometry(), type = VectorTileFeature$2.types[this.type], i, j; function project(line) { for (var j = 0; j < line.length; j++) { var p = line[j], y2 = 180 - (p.y + y0) * 360 / size; line[j] = [ (p.x + x0) * 360 / size - 180, 360 / Math.PI * Math.atan(Math.exp(y2 * Math.PI / 180)) - 90 ]; } } switch (this.type) { case 1: var points = []; for (i = 0; i < coords.length; i++) { points[i] = coords[i][0]; } coords = points; project(coords); break; case 2: for (i = 0; i < coords.length; i++) { project(coords[i]); } break; case 3: coords = classifyRings(coords); for (i = 0; i < coords.length; i++) { for (j = 0; j < coords[i].length; j++) { project(coords[i][j]); } } break; } if (coords.length === 1) { coords = coords[0]; } else { type = 'Multi' + type; } var result = { type: "Feature", geometry: { type: type, coordinates: coords }, properties: this.properties }; if ('id' in this) { result.id = this.id; } return result; }; // classifies an array of rings into polygons with outer rings and holes function classifyRings(rings) { var len = rings.length; if (len <= 1) { return [rings]; } var polygons = [], polygon, ccw; for (var i = 0; i < len; i++) { var area = signedArea(rings[i]); if (area === 0) { continue; } if (ccw === undefined) { ccw = area < 0; } if (ccw === area < 0) { if (polygon) { polygons.push(polygon); } polygon = [rings[i]]; } else { polygon.push(rings[i]); } } if (polygon) { polygons.push(polygon); } return polygons; } function signedArea(ring) { var sum = 0; for (var i = 0, len = ring.length, j = len - 1, p1, p2; i < len; j = i++) { p1 = ring[i]; p2 = ring[j]; sum += (p2.x - p1.x) * (p1.y + p2.y); } return sum; } var VectorTileFeature$1 = vectortilefeature; var vectortilelayer = VectorTileLayer$2; function VectorTileLayer$2(pbf, end) { // Public this.version = 1; this.name = null; this.extent = 4096; this.length = 0; // Private this._pbf = pbf; this._keys = []; this._values = []; this._features = []; pbf.readFields(readLayer, this, end); this.length = this._features.length; } function readLayer(tag, layer, pbf) { if (tag === 15) { layer.version = pbf.readVarint(); } else if (tag === 1) { layer.name = pbf.readString(); } else if (tag === 5) { layer.extent = pbf.readVarint(); } else if (tag === 2) { layer._features.push(pbf.pos); } else if (tag === 3) { layer._keys.push(pbf.readString()); } else if (tag === 4) { layer._values.push(readValueMessage(pbf)); } } function readValueMessage(pbf) { var value = null, end = pbf.readVarint() + pbf.pos; while (pbf.pos < end) { var tag = pbf.readVarint() >> 3; value = tag === 1 ? pbf.readString() : tag === 2 ? pbf.readFloat() : tag === 3 ? pbf.readDouble() : tag === 4 ? pbf.readVarint64() : tag === 5 ? pbf.readVarint() : tag === 6 ? pbf.readSVarint() : tag === 7 ? pbf.readBoolean() : null; } return value; } // return feature `i` from this layer as a `VectorTileFeature` VectorTileLayer$2.prototype.feature = function(i) { if (i < 0 || i >= this._features.length) { throw new Error('feature index out of bounds'); } this._pbf.pos = this._features[i]; var end = this._pbf.readVarint() + this._pbf.pos; return new VectorTileFeature$1(this._pbf, end, this.extent, this._keys, this._values); }; var VectorTileLayer$1 = vectortilelayer; var vectortile = VectorTile$1; function VectorTile$1(pbf, end) { this.layers = pbf.readFields(readTile, {}, end); } function readTile(tag, layers, pbf) { if (tag === 3) { var layer = new VectorTileLayer$1(pbf, pbf.readVarint() + pbf.pos); if (layer.length) { layers[layer.name] = layer; } } } var VectorTile = vectortile; /* * 🍂class VectorGrid.Protobuf * 🍂extends VectorGrid * * A `VectorGrid` for vector tiles fetched from the internet. * Tiles are supposed to be protobufs (AKA "protobuffer" or "Protocol Buffers"), * containing data which complies with the * [MapBox Vector Tile Specification](https://github.com/mapbox/vector-tile-spec/tree/master/2.1). * * This is the format used by: * - Mapbox Vector Tiles * - Mapzen Vector Tiles * - ESRI Vector Tiles * - [OpenMapTiles hosted Vector Tiles](https://openmaptiles.com/hosting/) * * 🍂example * * You must initialize a `VectorGrid.Protobuf` with a URL template, just like in * `L.TileLayer`s. The difference is that the template must point to vector tiles * (usually `.pbf` or `.mvt`) instead of raster (`.png` or `.jpg`) tiles, and that * you should define the styling for all the features. * *

* * For OpenMapTiles, with a key from [https://openmaptiles.org/docs/host/use-cdn/](https://openmaptiles.org/docs/host/use-cdn/), * initialization looks like this: * * ``` * L.vectorGrid.protobuf("https://free-{s}.tilehosting.com/data/v3/{z}/{x}/{y}.pbf.pict?key={key}", { * vectorTileLayerStyles: { ... }, * subdomains: "0123", * key: 'abcdefghi01234567890', * maxNativeZoom: 14 * }).addTo(map); * ``` * * And for Mapbox vector tiles, it looks like this: * * ``` * L.vectorGrid.protobuf("https://{s}.tiles.mapbox.com/v4/mapbox.mapbox-streets-v6/{z}/{x}/{y}.vector.pbf?access_token={token}", { * vectorTileLayerStyles: { ... }, * subdomains: "abcd", * token: "pk.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRTS.TUVWXTZ0123456789abcde" * }).addTo(map); * ``` */ L.VectorGrid.Protobuf = L.VectorGrid.extend({ options: { // 🍂section // As with `L.TileLayer`, the URL template might contain a reference to // any option (see the example above and note the `{key}` or `token` in the URL // template, and the corresponding option). // // 🍂option subdomains: String = 'abc' // Akin to the `subdomains` option for `L.TileLayer`. subdomains: 'abc', // Like L.TileLayer // // 🍂option fetchOptions: Object = {} // options passed to `fetch`, e.g. {credentials: 'same-origin'} to send cookie for the current domain fetchOptions: {} }, initialize: function(url, options) { // Inherits options from geojson-vt! // this._slicer = geojsonvt(geojson, options); this._url = url; L.VectorGrid.prototype.initialize.call(this, options); }, // 🍂method setUrl(url: String, noRedraw?: Boolean): this // Updates the layer's URL template and redraws it (unless `noRedraw` is set to `true`). setUrl: function(url, noRedraw) { this._url = url; if (!noRedraw) { this.redraw(); } return this; }, _getSubdomain: L.TileLayer.prototype._getSubdomain, _getVectorTilePromise: function(coords) { var data = { s: this._getSubdomain(coords), x: coords.x, y: coords.y, z: coords.z // z: this._getZoomForUrl() /// TODO: Maybe replicate TileLayer's maxNativeZoom }; if (this._map && !this._map.options.crs.infinite) { var invertedY = this._globalTileRange.max.y - coords.y; if (this.options.tms) { // Should this option be available in Leaflet.VectorGrid? data['y'] = invertedY; } data['-y'] = invertedY; } var tileUrl = L.Util.template(this._url, L.extend(data, this.options)); return fetch(tileUrl, this.options.fetchOptions).then(function(response){ if (!response.ok) { return {layers:[]}; } return response.blob().then( function (blob) { // console.log(blob); var reader = new FileReader(); return new Promise(function(resolve){ reader.addEventListener("loadend", function() { // reader.result contains the contents of blob as a typed array // blob.type === 'application/x-protobuf' var pbf = new index( reader.result ); // console.log(pbf); return resolve(new VectorTile( pbf )); }); reader.readAsArrayBuffer(blob); }); }); }).then(function(json){ // console.log('Vector tile:', json.layers); // console.log('Vector tile water:', json.layers.water); // Instance of VectorTileLayer // Normalize feature getters into actual instanced features for (var layerName in json.layers) { var feats = []; for (var i=0; i maxSqDist) {\n index = i;\n maxSqDist = sqDist;\n }\n }\n\n if (maxSqDist > sqTolerance) {\n points[index][2] = maxSqDist; // save the point importance in squared pixels as a z coordinate\n stack.push(first);\n stack.push(index);\n first = index;\n\n } else {\n last = stack.pop();\n first = stack.pop();\n }\n }\n}\n\n// square distance from a point to a segment\nfunction getSqSegDist(p, a, b) {\n\n var x = a[0], y = a[1],\n bx = b[0], by = b[1],\n px = p[0], py = p[1],\n dx = bx - x,\n dy = by - y;\n\n if (dx !== 0 || dy !== 0) {\n\n var t = ((px - x) * dx + (py - y) * dy) / (dx * dx + dy * dy);\n\n if (t > 1) {\n x = bx;\n y = by;\n\n } else if (t > 0) {\n x += dx * t;\n y += dy * t;\n }\n }\n\n dx = px - x;\n dy = py - y;\n\n return dx * dx + dy * dy;\n}\n\nvar convert_1 = convert$1;\n\nvar simplify = simplify_1;\n\n// converts GeoJSON feature into an intermediate projected JSON vector format with simplification data\n\nfunction convert$1(data, tolerance) {\n var features = [];\n\n if (data.type === 'FeatureCollection') {\n for (var i = 0; i < data.features.length; i++) {\n convertFeature(features, data.features[i], tolerance);\n }\n } else if (data.type === 'Feature') {\n convertFeature(features, data, tolerance);\n\n } else {\n // single geometry or a geometry collection\n convertFeature(features, {geometry: data}, tolerance);\n }\n return features;\n}\n\nfunction convertFeature(features, feature, tolerance) {\n if (feature.geometry === null) {\n // ignore features with null geometry\n return;\n }\n\n var geom = feature.geometry,\n type = geom.type,\n coords = geom.coordinates,\n tags = feature.properties,\n i, j, rings, projectedRing;\n\n if (type === 'Point') {\n features.push(create(tags, 1, [projectPoint(coords)]));\n\n } else if (type === 'MultiPoint') {\n features.push(create(tags, 1, project(coords)));\n\n } else if (type === 'LineString') {\n features.push(create(tags, 2, [project(coords, tolerance)]));\n\n } else if (type === 'MultiLineString' || type === 'Polygon') {\n rings = [];\n for (i = 0; i < coords.length; i++) {\n projectedRing = project(coords[i], tolerance);\n if (type === 'Polygon') { projectedRing.outer = (i === 0); }\n rings.push(projectedRing);\n }\n features.push(create(tags, type === 'Polygon' ? 3 : 2, rings));\n\n } else if (type === 'MultiPolygon') {\n rings = [];\n for (i = 0; i < coords.length; i++) {\n for (j = 0; j < coords[i].length; j++) {\n projectedRing = project(coords[i][j], tolerance);\n projectedRing.outer = (j === 0);\n rings.push(projectedRing);\n }\n }\n features.push(create(tags, 3, rings));\n\n } else if (type === 'GeometryCollection') {\n for (i = 0; i < geom.geometries.length; i++) {\n convertFeature(features, {\n geometry: geom.geometries[i],\n properties: tags\n }, tolerance);\n }\n\n } else {\n throw new Error('Input data is not a valid GeoJSON object.');\n }\n}\n\nfunction create(tags, type, geometry) {\n var feature = {\n geometry: geometry,\n type: type,\n tags: tags || null,\n min: [2, 1], // initial bbox values;\n max: [-1, 0] // note that coords are usually in [0..1] range\n };\n calcBBox(feature);\n return feature;\n}\n\nfunction project(lonlats, tolerance) {\n var projected = [];\n for (var i = 0; i < lonlats.length; i++) {\n projected.push(projectPoint(lonlats[i]));\n }\n if (tolerance) {\n simplify(projected, tolerance);\n calcSize(projected);\n }\n return projected;\n}\n\nfunction projectPoint(p) {\n var sin = Math.sin(p[1] * Math.PI / 180),\n x = (p[0] / 360 + 0.5),\n y = (0.5 - 0.25 * Math.log((1 + sin) / (1 - sin)) / Math.PI);\n\n y = y < 0 ? 0 :\n y > 1 ? 1 : y;\n\n return [x, y, 0];\n}\n\n// calculate area and length of the poly\nfunction calcSize(points) {\n var area = 0,\n dist = 0;\n\n for (var i = 0, a, b; i < points.length - 1; i++) {\n a = b || points[i];\n b = points[i + 1];\n\n area += a[0] * b[1] - b[0] * a[1];\n\n // use Manhattan distance instead of Euclidian one to avoid expensive square root computation\n dist += Math.abs(b[0] - a[0]) + Math.abs(b[1] - a[1]);\n }\n points.area = Math.abs(area / 2);\n points.dist = dist;\n}\n\n// calculate the feature bounding box for faster clipping later\nfunction calcBBox(feature) {\n var geometry = feature.geometry,\n min = feature.min,\n max = feature.max;\n\n if (feature.type === 1) { calcRingBBox(min, max, geometry); }\n else { for (var i = 0; i < geometry.length; i++) { calcRingBBox(min, max, geometry[i]); } }\n\n return feature;\n}\n\nfunction calcRingBBox(min, max, points) {\n for (var i = 0, p; i < points.length; i++) {\n p = points[i];\n min[0] = Math.min(p[0], min[0]);\n max[0] = Math.max(p[0], max[0]);\n min[1] = Math.min(p[1], min[1]);\n max[1] = Math.max(p[1], max[1]);\n }\n}\n\nvar tile = transformTile;\nvar point = transformPoint;\n\n// Transforms the coordinates of each feature in the given tile from\n// mercator-projected space into (extent x extent) tile space.\nfunction transformTile(tile, extent) {\n if (tile.transformed) { return tile; }\n\n var z2 = tile.z2,\n tx = tile.x,\n ty = tile.y,\n i, j, k;\n\n for (i = 0; i < tile.features.length; i++) {\n var feature = tile.features[i],\n geom = feature.geometry,\n type = feature.type;\n\n if (type === 1) {\n for (j = 0; j < geom.length; j++) { geom[j] = transformPoint(geom[j], extent, z2, tx, ty); }\n\n } else {\n for (j = 0; j < geom.length; j++) {\n var ring = geom[j];\n for (k = 0; k < ring.length; k++) { ring[k] = transformPoint(ring[k], extent, z2, tx, ty); }\n }\n }\n }\n\n tile.transformed = true;\n\n return tile;\n}\n\nfunction transformPoint(p, extent, z2, tx, ty) {\n var x = Math.round(extent * (p[0] * z2 - tx)),\n y = Math.round(extent * (p[1] * z2 - ty));\n return [x, y];\n}\n\nvar transform$1 = {\n tile: tile,\n point: point\n};\n\nvar clip_1 = clip$1;\n\n/* clip features between two axis-parallel lines:\n * | |\n * ___|___ | /\n * / | \____|____/\n * | |\n */\n\nfunction clip$1(features, scale, k1, k2, axis, intersect, minAll, maxAll) {\n\n k1 /= scale;\n k2 /= scale;\n\n if (minAll >= k1 && maxAll <= k2) { return features; } // trivial accept\n else if (minAll > k2 || maxAll < k1) { return null; } // trivial reject\n\n var clipped = [];\n\n for (var i = 0; i < features.length; i++) {\n\n var feature = features[i],\n geometry = feature.geometry,\n type = feature.type,\n min, max;\n\n min = feature.min[axis];\n max = feature.max[axis];\n\n if (min >= k1 && max <= k2) { // trivial accept\n clipped.push(feature);\n continue;\n } else if (min > k2 || max < k1) { continue; } // trivial reject\n\n var slices = type === 1 ?\n clipPoints(geometry, k1, k2, axis) :\n clipGeometry(geometry, k1, k2, axis, intersect, type === 3);\n\n if (slices.length) {\n // if a feature got clipped, it will likely get clipped on the next zoom level as well,\n // so there's no need to recalculate bboxes\n clipped.push({\n geometry: slices,\n type: type,\n tags: features[i].tags || null,\n min: feature.min,\n max: feature.max\n });\n }\n }\n\n return clipped.length ? clipped : null;\n}\n\nfunction clipPoints(geometry, k1, k2, axis) {\n var slice = [];\n\n for (var i = 0; i < geometry.length; i++) {\n var a = geometry[i],\n ak = a[axis];\n\n if (ak >= k1 && ak <= k2) { slice.push(a); }\n }\n return slice;\n}\n\nfunction clipGeometry(geometry, k1, k2, axis, intersect, closed) {\n\n var slices = [];\n\n for (var i = 0; i < geometry.length; i++) {\n\n var ak = 0,\n bk = 0,\n b = null,\n points = geometry[i],\n area = points.area,\n dist = points.dist,\n outer = points.outer,\n len = points.length,\n a, j, last;\n\n var slice = [];\n\n for (j = 0; j < len - 1; j++) {\n a = b || points[j];\n b = points[j + 1];\n ak = bk || a[axis];\n bk = b[axis];\n\n if (ak < k1) {\n\n if ((bk > k2)) { // ---|-----|-->\n slice.push(intersect(a, b, k1), intersect(a, b, k2));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n\n } else if (bk >= k1) { slice.push(intersect(a, b, k1)); } // ---|--> |\n\n } else if (ak > k2) {\n\n if ((bk < k1)) { // <--|-----|---\n slice.push(intersect(a, b, k2), intersect(a, b, k1));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n\n } else if (bk <= k2) { slice.push(intersect(a, b, k2)); } // | <--|---\n\n } else {\n\n slice.push(a);\n\n if (bk < k1) { // <--|--- |\n slice.push(intersect(a, b, k1));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n\n } else if (bk > k2) { // | ---|-->\n slice.push(intersect(a, b, k2));\n if (!closed) { slice = newSlice(slices, slice, area, dist, outer); }\n }\n // | --> |\n }\n }\n\n // add the last point\n a = points[len - 1];\n ak = a[axis];\n if (ak >= k1 && ak <= k2) { slice.push(a); }\n\n // close the polygon if its endpoints are not the same after clipping\n\n last = slice[slice.length - 1];\n if (closed && last && (slice[0][0] !== last[0] || slice[0][1] !== last[1])) { slice.push(slice[0]); }\n\n // add the final slice\n newSlice(slices, slice, area, dist, outer);\n }\n\n return slices;\n}\n\nfunction newSlice(slices, slice, area, dist, outer) {\n if (slice.length) {\n // we don't recalculate the area/length of the unclipped geometry because the case where it goes\n // below the visibility threshold as a result of clipping is rare, so we avoid doing unnecessary work\n slice.area = area;\n slice.dist = dist;\n if (outer !== undefined) { slice.outer = outer; }\n\n slices.push(slice);\n }\n return [];\n}\n\nvar clip$2 = clip_1;\n\nvar wrap_1 = wrap$1;\n\nfunction wrap$1(features, buffer, intersectX) {\n var merged = features,\n left = clip$2(features, 1, -1 - buffer, buffer, 0, intersectX, -1, 2), // left world copy\n right = clip$2(features, 1, 1 - buffer, 2 + buffer, 0, intersectX, -1, 2); // right world copy\n\n if (left || right) {\n merged = clip$2(features, 1, -buffer, 1 + buffer, 0, intersectX, -1, 2); // center world copy\n\n if (left) { merged = shiftFeatureCoords(left, 1).concat(merged); } // merge left into center\n if (right) { merged = merged.concat(shiftFeatureCoords(right, -1)); } // merge right into center\n }\n\n return merged;\n}\n\nfunction shiftFeatureCoords(features, offset) {\n var newFeatures = [];\n\n for (var i = 0; i < features.length; i++) {\n var feature = features[i],\n type = feature.type;\n\n var newGeometry;\n\n if (type === 1) {\n newGeometry = shiftCoords(feature.geometry, offset);\n } else {\n newGeometry = [];\n for (var j = 0; j < feature.geometry.length; j++) {\n newGeometry.push(shiftCoords(feature.geometry[j], offset));\n }\n }\n\n newFeatures.push({\n geometry: newGeometry,\n type: type,\n tags: feature.tags,\n min: [feature.min[0] + offset, feature.min[1]],\n max: [feature.max[0] + offset, feature.max[1]]\n });\n }\n\n return newFeatures;\n}\n\nfunction shiftCoords(points, offset) {\n var newPoints = [];\n newPoints.area = points.area;\n newPoints.dist = points.dist;\n\n for (var i = 0; i < points.length; i++) {\n newPoints.push([points[i][0] + offset, points[i][1], points[i][2]]);\n }\n return newPoints;\n}\n\nvar tile$1 = createTile$1;\n\nfunction createTile$1(features, z2, tx, ty, tolerance, noSimplify) {\n var tile = {\n features: [],\n numPoints: 0,\n numSimplified: 0,\n numFeatures: 0,\n source: null,\n x: tx,\n y: ty,\n z2: z2,\n transformed: false,\n min: [2, 1],\n max: [-1, 0]\n };\n for (var i = 0; i < features.length; i++) {\n tile.numFeatures++;\n addFeature(tile, features[i], tolerance, noSimplify);\n\n var min = features[i].min,\n max = features[i].max;\n\n if (min[0] < tile.min[0]) { tile.min[0] = min[0]; }\n if (min[1] < tile.min[1]) { tile.min[1] = min[1]; }\n if (max[0] > tile.max[0]) { tile.max[0] = max[0]; }\n if (max[1] > tile.max[1]) { tile.max[1] = max[1]; }\n }\n return tile;\n}\n\nfunction addFeature(tile, feature, tolerance, noSimplify) {\n\n var geom = feature.geometry,\n type = feature.type,\n simplified = [],\n sqTolerance = tolerance * tolerance,\n i, j, ring, p;\n\n if (type === 1) {\n for (i = 0; i < geom.length; i++) {\n simplified.push(geom[i]);\n tile.numPoints++;\n tile.numSimplified++;\n }\n\n } else {\n\n // simplify and transform projected coordinates for tile geometry\n for (i = 0; i < geom.length; i++) {\n ring = geom[i];\n\n // filter out tiny polylines & polygons\n if (!noSimplify && ((type === 2 && ring.dist < tolerance) ||\n (type === 3 && ring.area < sqTolerance))) {\n tile.numPoints += ring.length;\n continue;\n }\n\n var simplifiedRing = [];\n\n for (j = 0; j < ring.length; j++) {\n p = ring[j];\n // keep points with importance > tolerance\n if (noSimplify || p[2] > sqTolerance) {\n simplifiedRing.push(p);\n tile.numSimplified++;\n }\n tile.numPoints++;\n }\n\n if (type === 3) { rewind(simplifiedRing, ring.outer); }\n\n simplified.push(simplifiedRing);\n }\n }\n\n if (simplified.length) {\n tile.features.push({\n geometry: simplified,\n type: type,\n tags: feature.tags || null\n });\n }\n}\n\nfunction rewind(ring, clockwise) {\n var area = signedArea(ring);\n if (area < 0 === clockwise) { ring.reverse(); }\n}\n\nfunction signedArea(ring) {\n var sum = 0;\n for (var i = 0, len = ring.length, j = len - 1, p1, p2; i < len; j = i++) {\n p1 = ring[i];\n p2 = ring[j];\n sum += (p2[0] - p1[0]) * (p1[1] + p2[1]);\n }\n return sum;\n}\n\nvar index = geojsonvt;\n\nvar convert = convert_1;\nvar transform = transform$1;\nvar clip = clip_1;\nvar wrap = wrap_1;\nvar createTile = tile$1; // final simplified tile generation\n\n\nfunction geojsonvt(data, options) {\n return new GeoJSONVT(data, options);\n}\n\nfunction GeoJSONVT(data, options) {\n options = this.options = extend(Object.create(this.options), options);\n\n var debug = options.debug;\n\n if (debug) { console.time('preprocess data'); }\n\n var z2 = 1 << options.maxZoom, // 2^z\n features = convert(data, options.tolerance / (z2 * options.extent));\n\n this.tiles = {};\n this.tileCoords = [];\n\n if (debug) {\n console.timeEnd('preprocess data');\n console.log('index: maxZoom: %d, maxPoints: %d', options.indexMaxZoom, options.indexMaxPoints);\n console.time('generate tiles');\n this.stats = {};\n this.total = 0;\n }\n\n features = wrap(features, options.buffer / options.extent, intersectX);\n\n // start slicing from the top tile down\n if (features.length) { this.splitTile(features, 0, 0, 0); }\n\n if (debug) {\n if (features.length) { console.log('features: %d, points: %d', this.tiles[0].numFeatures, this.tiles[0].numPoints); }\n console.timeEnd('generate tiles');\n console.log('tiles generated:', this.total, JSON.stringify(this.stats));\n }\n}\n\nGeoJSONVT.prototype.options = {\n maxZoom: 14, // max zoom to preserve detail on\n indexMaxZoom: 5, // max zoom in the tile index\n indexMaxPoints: 100000, // max number of points per tile in the tile index\n solidChildren: false, // whether to tile solid square tiles further\n tolerance: 3, // simplification tolerance (higher means simpler)\n extent: 4096, // tile extent\n buffer: 64, // tile buffer on each side\n debug: 0 // logging level (0, 1 or 2)\n};\n\nGeoJSONVT.prototype.splitTile = function (features, z, x, y, cz, cx, cy) {\n var this$1 = this;\n\n\n var stack = [features, z, x, y],\n options = this.options,\n debug = options.debug,\n solid = null;\n\n // avoid recursion by using a processing queue\n while (stack.length) {\n y = stack.pop();\n x = stack.pop();\n z = stack.pop();\n features = stack.pop();\n\n var z2 = 1 << z,\n id = toID(z, x, y),\n tile = this$1.tiles[id],\n tileTolerance = z === options.maxZoom ? 0 : options.tolerance / (z2 * options.extent);\n\n if (!tile) {\n if (debug > 1) { console.time('creation'); }\n\n tile = this$1.tiles[id] = createTile(features, z2, x, y, tileTolerance, z === options.maxZoom);\n this$1.tileCoords.push({z: z, x: x, y: y});\n\n if (debug) {\n if (debug > 1) {\n console.log('tile z%d-%d-%d (features: %d, points: %d, simplified: %d)',\n z, x, y, tile.numFeatures, tile.numPoints, tile.numSimplified);\n console.timeEnd('creation');\n }\n var key = 'z' + z;\n this$1.stats[key] = (this$1.stats[key] || 0) + 1;\n this$1.total++;\n }\n }\n\n // save reference to original geometry in tile so that we can drill down later if we stop now\n tile.source = features;\n\n // if it's the first-pass tiling\n if (!cz) {\n // stop tiling if we reached max zoom, or if the tile is too simple\n if (z === options.indexMaxZoom || tile.numPoints <= options.indexMaxPoints) { continue; }\n\n // if a drilldown to a specific tile\n } else {\n // stop tiling if we reached base zoom or our target tile zoom\n if (z === options.maxZoom || z === cz) { continue; }\n\n // stop tiling if it's not an ancestor of the target tile\n var m = 1 << (cz - z);\n if (x !== Math.floor(cx / m) || y !== Math.floor(cy / m)) { continue; }\n }\n\n // stop tiling if the tile is solid clipped square\n if (!options.solidChildren && isClippedSquare(tile, options.extent, options.buffer)) {\n if (cz) { solid = z; } // and remember the zoom if we're drilling down\n continue;\n }\n\n // if we slice further down, no need to keep source geometry\n tile.source = null;\n\n if (debug > 1) { console.time('clipping'); }\n\n // values we'll use for clipping\n var k1 = 0.5 * options.buffer / options.extent,\n k2 = 0.5 - k1,\n k3 = 0.5 + k1,\n k4 = 1 + k1,\n tl, bl, tr, br, left, right;\n\n tl = bl = tr = br = null;\n\n left = clip(features, z2, x - k1, x + k3, 0, intersectX, tile.min[0], tile.max[0]);\n right = clip(features, z2, x + k2, x + k4, 0, intersectX, tile.min[0], tile.max[0]);\n\n if (left) {\n tl = clip(left, z2, y - k1, y + k3, 1, intersectY, tile.min[1], tile.max[1]);\n bl = clip(left, z2, y + k2, y + k4, 1, intersectY, tile.min[1], tile.max[1]);\n }\n\n if (right) {\n tr = clip(right, z2, y - k1, y + k3, 1, intersectY, tile.min[1], tile.max[1]);\n br = clip(right, z2, y + k2, y + k4, 1, intersectY, tile.min[1], tile.max[1]);\n }\n\n if (debug > 1) { console.timeEnd('clipping'); }\n\n if (tl) { stack.push(tl, z + 1, x * 2, y * 2); }\n if (bl) { stack.push(bl, z + 1, x * 2, y * 2 + 1); }\n if (tr) { stack.push(tr, z + 1, x * 2 + 1, y * 2); }\n if (br) { stack.push(br, z + 1, x * 2 + 1, y * 2 + 1); }\n }\n\n return solid;\n};\n\nGeoJSONVT.prototype.getTile = function (z, x, y) {\n var this$1 = this;\n\n var options = this.options,\n extent = options.extent,\n debug = options.debug;\n\n var z2 = 1 << z;\n x = ((x % z2) + z2) % z2; // wrap tile x coordinate\n\n var id = toID(z, x, y);\n if (this.tiles[id]) { return transform.tile(this.tiles[id], extent); }\n\n if (debug > 1) { console.log('drilling down to z%d-%d-%d', z, x, y); }\n\n var z0 = z,\n x0 = x,\n y0 = y,\n parent;\n\n while (!parent && z0 > 0) {\n z0--;\n x0 = Math.floor(x0 / 2);\n y0 = Math.floor(y0 / 2);\n parent = this$1.tiles[toID(z0, x0, y0)];\n }\n\n if (!parent || !parent.source) { return null; }\n\n // if we found a parent tile containing the original geometry, we can drill down from it\n if (debug > 1) { console.log('found parent tile z%d-%d-%d', z0, x0, y0); }\n\n // it parent tile is a solid clipped square, return it instead since it's identical\n if (isClippedSquare(parent, extent, options.buffer)) { return transform.tile(parent, extent); }\n\n if (debug > 1) { console.time('drilling down'); }\n var solid = this.splitTile(parent.source, z0, x0, y0, z, x, y);\n if (debug > 1) { console.timeEnd('drilling down'); }\n\n // one of the parent tiles was a solid clipped square\n if (solid !== null) {\n var m = 1 << (z - solid);\n id = toID(solid, Math.floor(x / m), Math.floor(y / m));\n }\n\n return this.tiles[id] ? transform.tile(this.tiles[id], extent) : null;\n};\n\nfunction toID(z, x, y) {\n return (((1 << z) * y + x) * 32) + z;\n}\n\nfunction intersectX(a, b, x) {\n return [x, (x - a[0]) * (b[1] - a[1]) / (b[0] - a[0]) + a[1], 1];\n}\nfunction intersectY(a, b, y) {\n return [(y - a[1]) * (b[0] - a[0]) / (b[1] - a[1]) + a[0], y, 1];\n}\n\nfunction extend(dest, src) {\n for (var i in src) { dest[i] = src[i]; }\n return dest;\n}\n\n// checks whether a tile is a whole-area fill after clipping; if it is, there's no sense slicing it further\nfunction isClippedSquare(tile, extent, buffer) {\n\n var features = tile.source;\n if (features.length !== 1) { return false; }\n\n var feature = features[0];\n if (feature.type !== 3 || feature.geometry.length > 1) { return false; }\n\n var len = feature.geometry[0].length;\n if (len !== 5) { return false; }\n\n for (var i = 0; i < len; i++) {\n var p = transform.point(feature.geometry[0][i], extent, tile.z2, tile.x, tile.y);\n if ((p[0] !== -buffer && p[0] !== extent + buffer) ||\n (p[1] !== -buffer && p[1] !== extent + buffer)) { return false; }\n }\n\n return true;\n}\n\nvar identity = function(x) {\n return x;\n};\n\nvar transform$3 = function(topology) {\n if ((transform = topology.transform) == null) { return identity; }\n var transform,\n x0,\n y0,\n kx = transform.scale[0],\n ky = transform.scale[1],\n dx = transform.translate[0],\n dy = transform.translate[1];\n return function(point, i) {\n if (!i) { x0 = y0 = 0; }\n point[0] = (x0 += point[0]) * kx + dx;\n point[1] = (y0 += point[1]) * ky + dy;\n return point;\n };\n};\n\nvar bbox = function(topology) {\n var bbox = topology.bbox;\n\n function bboxPoint(p0) {\n p1[0] = p0[0], p1[1] = p0[1], t(p1);\n if (p1[0] < x0) { x0 = p1[0]; }\n if (p1[0] > x1) { x1 = p1[0]; }\n if (p1[1] < y0) { y0 = p1[1]; }\n if (p1[1] > y1) { y1 = p1[1]; }\n }\n\n function bboxGeometry(o) {\n switch (o.type) {\n case \"GeometryCollection\": o.geometries.forEach(bboxGeometry); break;\n case \"Point\": bboxPoint(o.coordinates); break;\n case \"MultiPoint\": o.coordinates.forEach(bboxPoint); break;\n }\n }\n\n if (!bbox) {\n var t = transform$3(topology), p0, p1 = new Array(2), name,\n x0 = Infinity, y0 = x0, x1 = -x0, y1 = -x0;\n\n topology.arcs.forEach(function(arc) {\n var i = -1, n = arc.length;\n while (++i < n) {\n p0 = arc[i], p1[0] = p0[0], p1[1] = p0[1], t(p1, i);\n if (p1[0] < x0) { x0 = p1[0]; }\n if (p1[0] > x1) { x1 = p1[0]; }\n if (p1[1] < y0) { y0 = p1[1]; }\n if (p1[1] > y1) { y1 = p1[1]; }\n }\n });\n\n for (name in topology.objects) {\n bboxGeometry(topology.objects[name]);\n }\n\n bbox = topology.bbox = [x0, y0, x1, y1];\n }\n\n return bbox;\n};\n\nvar reverse = function(array, n) {\n var t, j = array.length, i = j - n;\n while (i < --j) { t = array[i], array[i++] = array[j], array[j] = t; }\n};\n\nvar feature = function(topology, o) {\n return o.type === \"GeometryCollection\"\n ? {type: \"FeatureCollection\", features: o.geometries.map(function(o) { return feature$1(topology, o); })}\n : feature$1(topology, o);\n};\n\nfunction feature$1(topology, o) {\n var id = o.id,\n bbox = o.bbox,\n properties = o.properties == null ? {} : o.properties,\n geometry = object(topology, o);\n return id == null && bbox == null ? {type: \"Feature\", properties: properties, geometry: geometry}\n : bbox == null ? {type: \"Feature\", id: id, properties: properties, geometry: geometry}\n : {type: \"Feature\", id: id, bbox: bbox, properties: properties, geometry: geometry};\n}\n\nfunction object(topology, o) {\n var transformPoint = transform$3(topology),\n arcs = topology.arcs;\n\n function arc(i, points) {\n if (points.length) { points.pop(); }\n for (var a = arcs[i < 0 ? ~i : i], k = 0, n = a.length; k < n; ++k) {\n points.push(transformPoint(a[k].slice(), k));\n }\n if (i < 0) { reverse(points, n); }\n }\n\n function point(p) {\n return transformPoint(p.slice());\n }\n\n function line(arcs) {\n var points = [];\n for (var i = 0, n = arcs.length; i < n; ++i) { arc(arcs[i], points); }\n if (points.length < 2) { points.push(points[0].slice()); }\n return points;\n }\n\n function ring(arcs) {\n var points = line(arcs);\n while (points.length < 4) { points.push(points[0].slice()); }\n return points;\n }\n\n function polygon(arcs) {\n return arcs.map(ring);\n }\n\n function geometry(o) {\n var type = o.type, coordinates;\n switch (type) {\n case \"GeometryCollection\": return {type: type, geometries: o.geometries.map(geometry)};\n case \"Point\": coordinates = point(o.coordinates); break;\n case \"MultiPoint\": coordinates = o.coordinates.map(point); break;\n case \"LineString\": coordinates = line(o.arcs); break;\n case \"MultiLineString\": coordinates = o.arcs.map(line); break;\n case \"Polygon\": coordinates = polygon(o.arcs); break;\n case \"MultiPolygon\": coordinates = o.arcs.map(polygon); break;\n default: return null;\n }\n return {type: type, coordinates: coordinates};\n }\n\n return geometry(o);\n}\n\nvar stitch = function(topology, arcs) {\n var stitchedArcs = {},\n fragmentByStart = {},\n fragmentByEnd = {},\n fragments = [],\n emptyIndex = -1;\n\n // Stitch empty arcs first, since they may be subsumed by other arcs.\n arcs.forEach(function(i, j) {\n var arc = topology.arcs[i < 0 ? ~i : i], t;\n if (arc.length < 3 && !arc[1][0] && !arc[1][1]) {\n t = arcs[++emptyIndex], arcs[emptyIndex] = i, arcs[j] = t;\n }\n });\n\n arcs.forEach(function(i) {\n var e = ends(i),\n start = e[0],\n end = e[1],\n f, g;\n\n if (f = fragmentByEnd[start]) {\n delete fragmentByEnd[f.end];\n f.push(i);\n f.end = end;\n if (g = fragmentByStart[end]) {\n delete fragmentByStart[g.start];\n var fg = g === f ? f : f.concat(g);\n fragmentByStart[fg.start = f.start] = fragmentByEnd[fg.end = g.end] = fg;\n } else {\n fragmentByStart[f.start] = fragmentByEnd[f.end] = f;\n }\n } else if (f = fragmentByStart[end]) {\n delete fragmentByStart[f.start];\n f.unshift(i);\n f.start = start;\n if (g = fragmentByEnd[start]) {\n delete fragmentByEnd[g.end];\n var gf = g === f ? f : g.concat(f);\n fragmentByStart[gf.start = g.start] = fragmentByEnd[gf.end = f.end] = gf;\n } else {\n fragmentByStart[f.start] = fragmentByEnd[f.end] = f;\n }\n } else {\n f = [i];\n fragmentByStart[f.start = start] = fragmentByEnd[f.end = end] = f;\n }\n });\n\n function ends(i) {\n var arc = topology.arcs[i < 0 ? ~i : i], p0 = arc[0], p1;\n if (topology.transform) { p1 = [0, 0], arc.forEach(function(dp) { p1[0] += dp[0], p1[1] += dp[1]; }); }\n else { p1 = arc[arc.length - 1]; }\n return i < 0 ? [p1, p0] : [p0, p1];\n }\n\n function flush(fragmentByEnd, fragmentByStart) {\n for (var k in fragmentByEnd) {\n var f = fragmentByEnd[k];\n delete fragmentByStart[f.start];\n delete f.start;\n delete f.end;\n f.forEach(function(i) { stitchedArcs[i < 0 ? ~i : i] = 1; });\n fragments.push(f);\n }\n }\n\n flush(fragmentByEnd, fragmentByStart);\n flush(fragmentByStart, fragmentByEnd);\n arcs.forEach(function(i) { if (!stitchedArcs[i < 0 ? ~i : i]) { fragments.push([i]); } });\n\n return fragments;\n};\n\nfunction extractArcs(topology, object$$1, filter) {\n var arcs = [],\n geomsByArc = [],\n geom;\n\n function extract0(i) {\n var j = i < 0 ? ~i : i;\n (geomsByArc[j] || (geomsByArc[j] = [])).push({i: i, g: geom});\n }\n\n function extract1(arcs) {\n arcs.forEach(extract0);\n }\n\n function extract2(arcs) {\n arcs.forEach(extract1);\n }\n\n function extract3(arcs) {\n arcs.forEach(extract2);\n }\n\n function geometry(o) {\n switch (geom = o, o.type) {\n case \"GeometryCollection\": o.geometries.forEach(geometry); break;\n case \"LineString\": extract1(o.arcs); break;\n case \"MultiLineString\": case \"Polygon\": extract2(o.arcs); break;\n case \"MultiPolygon\": extract3(o.arcs); break;\n }\n }\n\n geometry(object$$1);\n\n geomsByArc.forEach(filter == null\n ? function(geoms) { arcs.push(geoms[0].i); }\n : function(geoms) { if (filter(geoms[0].g, geoms[geoms.length - 1].g)) { arcs.push(geoms[0].i); } });\n\n return arcs;\n}\n\nfunction planarRingArea(ring) {\n var i = -1, n = ring.length, a, b = ring[n - 1], area = 0;\n while (++i < n) { a = b, b = ring[i], area += a[0] * b[1] - a[1] * b[0]; }\n return Math.abs(area); // Note: doubled area!\n}\n\nvar bisect = function(a, x) {\n var lo = 0, hi = a.length;\n while (lo < hi) {\n var mid = lo + hi >>> 1;\n if (a[mid] < x) { lo = mid + 1; }\n else { hi = mid; }\n }\n return lo;\n};\n\nvar slicers = {};\nvar options;\n\nonmessage = function (e) {\n if (e.data[0] === 'slice') {\n // Given a blob of GeoJSON and some topojson/geojson-vt options, do the slicing.\n var geojson = e.data[1];\n options = e.data[2];\n\n if (geojson.type && geojson.type === 'Topology') {\n for (var layerName in geojson.objects) {\n slicers[layerName] = index(\n feature(geojson, geojson.objects[layerName])\n , options);\n }\n } else {\n slicers[options.vectorTileLayerName] = index(geojson, options);\n }\n\n } else if (e.data[0] === 'get') {\n // Gets the vector tile for the given coordinates, sends it back as a message\n var coords = e.data[1];\n\n var tileLayers = {};\n for (var layerName in slicers) {\n var slicedTileLayer = slicers[layerName].getTile(coords.z, coords.x, coords.y);\n\n if (slicedTileLayer) {\n var vectorTileLayer = {\n features: [],\n extent: options.extent,\n name: options.vectorTileLayerName,\n length: slicedTileLayer.features.length\n };\n\n for (var i in slicedTileLayer.features) {\n var feat = {\n geometry: slicedTileLayer.features[i].geometry,\n properties: slicedTileLayer.features[i].tags,\n type: slicedTileLayer.features[i].type // 1 = point, 2 = line, 3 = polygon\n };\n vectorTileLayer.features.push(feat);\n }\n tileLayers[layerName] = vectorTileLayer;\n }\n }\n postMessage({ layers: tileLayers, coords: coords });\n }\n};\n//# sourceMap" + "pingURL=slicerWebWorker.js.worker.map\n", "text/plain; charset=us-ascii", false); // The geojson/topojson is sliced into tiles via a web worker. // This import statement depends on rollup-file-as-blob, so that the // variable 'workerCode' is a blob URL. /* * 🍂class VectorGrid.Slicer * 🍂extends VectorGrid * * A `VectorGrid` for slicing up big GeoJSON or TopoJSON documents in vector * tiles, leveraging [`geojson-vt`](https://github.com/mapbox/geojson-vt). * * 🍂example * * ``` * var geoJsonDocument = { * type: 'FeatureCollection', * features: [ ... ] * }; * * L.vectorGrid.slicer(geoJsonDocument, { * vectorTileLayerStyles: { * sliced: { ... } * } * }).addTo(map); * * ``` * * `VectorGrid.Slicer` can also handle [TopoJSON](https://github.com/mbostock/topojson) transparently: * ```js * var layer = L.vectorGrid.slicer(topojson, options); * ``` * * The TopoJSON format [implicitly groups features into "objects"](https://github.com/mbostock/topojson-specification/blob/master/README.md#215-objects). * These will be transformed into vector tile layer names when styling (the * `vectorTileLayerName` option is ignored when using TopoJSON). * */ L.VectorGrid.Slicer = L.VectorGrid.extend({ options: { // 🍂section // Additionally to these options, `VectorGrid.Slicer` can take in any // of the [`geojson-vt` options](https://github.com/mapbox/geojson-vt#options). // 🍂option vectorTileLayerName: String = 'sliced' // Vector tiles contain a set of *data layers*, and those data layers // contain features. Thus, the slicer creates one data layer, with // the name given in this option. This is important for symbolizing the data. vectorTileLayerName: 'sliced', extent: 4096, // Default for geojson-vt maxZoom: 14 // Default for geojson-vt }, initialize: function(geojson, options) { L.VectorGrid.prototype.initialize.call(this, options); // Create a shallow copy of this.options, excluding things that might // be functions - we only care about topojson/geojsonvt options var options = {}; for (var i in this.options) { if (i !== 'rendererFactory' && i !== 'vectorTileLayerStyles' && typeof (this.options[i]) !== 'function' ) { options[i] = this.options[i]; } } // this._worker = new Worker(window.URL.createObjectURL(new Blob([workerCode]))); this._worker = new Worker(workerCode); // Send initial data to worker. this._worker.postMessage(['slice', geojson, options]); }, _getVectorTilePromise: function(coords) { var _this = this; var p = new Promise( function waitForWorker(res) { _this._worker.addEventListener('message', function recv(m) { if (m.data.coords && m.data.coords.x === coords.x && m.data.coords.y === coords.y && m.data.coords.z === coords.z ) { res(m.data); _this._worker.removeEventListener('message', recv); } }); }); this._worker.postMessage(['get', coords]); return p; }, }); L.vectorGrid.slicer = function (geojson, options) { return new L.VectorGrid.Slicer(geojson, options); }; L.Canvas.Tile = L.Canvas.extend({ initialize: function (tileCoord, tileSize, options) { L.Canvas.prototype.initialize.call(this, options); this._tileCoord = tileCoord; this._size = tileSize; this._initContainer(); this._container.setAttribute('width', this._size.x); this._container.setAttribute('height', this._size.y); this._layers = {}; this._drawnLayers = {}; this._drawing = true; if (options.interactive) { // By default, Leaflet tiles do not have pointer events this._container.style.pointerEvents = 'auto'; } }, getCoord: function() { return this._tileCoord; }, getContainer: function() { return this._container; }, getOffset: function() { return this._tileCoord.scaleBy(this._size).subtract(this._map.getPixelOrigin()); }, onAdd: L.Util.falseFn, addTo: function(map) { this._map = map; }, removeFrom: function (map) { delete this._map; }, _onClick: function (e) { var point = this._map.mouseEventToLayerPoint(e).subtract(this.getOffset()), layer, clickedLayer; for (var id in this._layers) { layer = this._layers[id]; if (layer.options.interactive && layer._containsPoint(point) && !this._map._draggableMoved(layer)) { clickedLayer = layer; } } if (clickedLayer) { L.DomEvent.fakeStop(e); this._fireEvent([clickedLayer], e); } }, _onMouseMove: function (e) { if (!this._map || this._map.dragging.moving() || this._map._animatingZoom) { return; } var point = this._map.mouseEventToLayerPoint(e).subtract(this.getOffset()); this._handleMouseHover(e, point); }, /// TODO: Modify _initPath to include an extra parameter, a group name /// to order symbolizers by z-index _updateIcon: function (layer) { if (!this._drawing) { return; } var icon = layer.options.icon, options = icon.options, size = L.point(options.iconSize), anchor = options.iconAnchor || size && size.divideBy(2, true), p = layer._point.subtract(anchor), ctx = this._ctx, img = layer._getImage(); if (img.complete) { ctx.drawImage(img, p.x, p.y, size.x, size.y); } else { L.DomEvent.on(img, 'load', function() { ctx.drawImage(img, p.x, p.y, size.x, size.y); }); } this._drawnLayers[layer._leaflet_id] = layer; } }); L.canvas.tile = function(tileCoord, tileSize, opts){ return new L.Canvas.Tile(tileCoord, tileSize, opts); }; // Aux file to bundle everything together //# sourceMappingURL=Leaflet.VectorGrid.js.map